skip to main content


Search for: All records

Creators/Authors contains: "Zeller, Matthias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 7, 2024
  2. Free, publicly-accessible full text available December 1, 2024
  3. Only two 4-halo-1H-pyrazole crystal structures are known to date (chloro and bromo, the structure of 4-iodo-1H-pyrazole has not been reported yet). The triclinic structure of 4-fluoro-1H-pyrazole, C3H3FN2(P\overline{1}), reported here is not isomorphous with those of the chloro and bromo analogues (which are isomorphous, orthorhombicPnma). To avoid sublimation during the measurement, diffraction data were collected at 150 K. Two crystallographically unique 4-fluoro-1H-pyrazole moieties linked by an N—H...N hydrogen bond are found in the asymmetric unit. Unlike the trimeric supramolecular motifs found in the structures of the chloro and bromo analogues, 4-fluoro-1H-pyrazole forms one-dimensional chains by intermolecular hydrogen bonding in the crystal.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. An extensive single-crystal X-ray crystallographic study of 11 nanojar structures (of which seven are novel) of the formula [anion⊂{cis-CuII(μ-OH)(μ-pz)}n]2– (anion = BeF42–, n = 28, 31, 32, CunBeF4; anion = SO42–, n = 28, 31, CunSO4; pz = pyrazolate, C3H3N2–) has been carried out, providing a detailed description of isomorphism and pseudopolymorphism in nanojars. The results point to a remarkable variety in the shape of the constituent [cis-CuII(μ-OH)(μ-pz)]x (Cux; x = 6, 8, 9, 10, 12 and 14) metallamacrocycles, despite only small differences in the coordination environment of the individual Cu2+ centers. The flexibility of the Cux rings and, ultimately, of the nanojar framework allows for the incarceration of different anions with slightly different dimensions in a nanojar of a given size, resulting in the formation of isomorphous structures in the case of CunBeF4 and CunSO4. Selectivity studies monitored by electrospray-ionization mass spectrometry (ESI-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) reveal that despite the virtually identical H-bonding pattern around the two anions in nanojars of a given size, SO42– is strongly preferred over BeF42–. The origins of this selectivity are discussed, along with the nature of bonding in the two isosteric anions. Lastly, the crystal structure of (Bu4N)3Be2F7(H2O)3 documents the formation of the Be2F73– ion from BeF42–. 
    more » « less
  6. The unprecedented liquid–liquid extraction of the dinegative chromate ion (CrO42–) from neutral aqueous solutions into aliphatic hydrocarbon solvents using nanojars as extraction agents is demonstrated. Transferring chromate from water into an organic solvent is extremely challenging due to its large hydration energy (ΔGh° = −950 kJ/mol) and strong oxidizing ability. Owing to their highly hydrophilic anion binding pockets lined by a multitude of hydrogen bond donor OH groups, neutral nanojars of the formula [cis-CuII(μ-OH)(μ-4-Rpz)]n (n = 27–33; pz = pyrazolate anion; R = H or n-octyl) strongly bind the CrO42– ion and efficiently transfer it from water into n-heptane or C11 – C13 isoalkanes (when R = n-octyl). The extracted chromate can easily be recovered from the organic layer by stripping with an aqueous acid solution. Electrospray ionization mass spectrometric, UV–vis and paramagnetic 1H NMR spectroscopic, X-ray crystallographic, and thermal stability studies in solution and chemical stability studies toward NH3, methanol, and Ba2+ ions are employed to explore the binding of the CrO42– ion by nanojars. Titration of carbonate nanojars [CO3 ⊂ {Cu(OH)(pz)}n]2– with H2CrO4 leads to anion exchange and the formation of chromate nanojars [CrO4 ⊂ {Cu(OH)(pz)}n]2–. Details of chromate binding by H-bonding based on single-crystal structures of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}28], four pseudopolymorphs of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}31], and also the methoxy-substituted derivative (Bu4N)2[CrO4 ⊂ {Cu31(OH)30(OCH3)(pz)31}] are presented. 
    more » « less
  7. A series of 1,2-dimethylimidazolium ionic liquids bearing a hexadecyl alkyl chain are thoroughly examined via X-ray crystallography. The crystal structures reveal several key variations in the non-covalent interactions in the lipid-like salts. Specifically, distinct cation–cation π interactions are observed when comparing the bromide and iodide structures. Changing the anion to bis(trifluoromethane)sulfonimide (Tf 2 N − ) changes these cation–cation π interactions with anion⋯π interactions. Additionally, several well-defined geometries of the cations are noted based on torsion and core-plane angles of the alkyl chains. Hirshfeld surface analysis is used to distinguish the interactions and geometries in the solid state, helping to reveal characteristic structural fingerprints for the compounds. The solid-state structures of the ionic liquids are correlated with the solution-state structures through UV-vis spectroscopic studies, further emphasizing the importance of the π interactions in the formation of aggregates. Finally, we investigated the thermal properties of the ionic liquids, revealing complex phase transitions for the iodide-containing species. These phase transitions are further rationalized via the analysis of the data gathered from the structures of the other crystallized salts. 
    more » « less
  8. Both trans and cis iron–CTMC complexes, namely, trans -dichlorido[(5 SR ,7 RS ,12 RS ,14 SR )-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) tetrachloridoferrate, [Fe(C 14 H 32 N 4 )Cl 2 ][FeCl 4 ] ( 1a ), the analogous chloride methanol monosolvate, [Fe(C 14 H 32 N 4 )Cl 2 ]Cl·CH 3 OH ( 1b ), and cis -dichlorido[(5 SR ,7 RS ,12 SR ,14 RS )-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane]iron(III) chloride, [Fe(C 14 H 32 N 4 )Cl 2 ]Cl ( 2 ), were successfully synthesized and structurally characterized using X-ray diffraction. The coordination geometry of the macrocycle is dependent on the stereoisomerism of CTMC. The packing of these complexes appears to be strongly influenced by extensive hydrogen-bonding interactions, which are in turn determined by the nature of the counter-anions ( 1a versus 1b ) and/or the coordination geometry of the macrocycle ( 1a/1b versus 2 ). These observations are extended to related ferric cis - and trans- dichloro macrocyclic complexes. 
    more » « less