skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anticipating water distribution service outages from increasing temperatures
Abstract With projected temperature increases and extreme events due to climate change for many regions of the world, characterizing the impacts of these emerging hazards on water distribution systems is necessary to identify and prioritize adaptation strategies for ensuring reliability. To aid decision-making, new insights are needed into how water distribution system reliability to climate-driven heat will change, and the proactive maintenance strategies available to combat failures. To this end, we present the model Perses, a framework that joins a water distribution network hydraulic solver with reliability models of physical assets or components to estimate temperature increase-driven failures and resulting service outages in the long term. A theoretical case study is developed using Phoenix, Arizona temperature profiles, a city with extreme temperatures and a rapidly expanding infrastructure. By end-of-century under hotter futures there are projected to be 1%–5% more pump failures, 2%–5% more PVC pipe failures, and 3%–7% more iron pipe failures (RCP 4.5–8.5) than a baseline historical temperature profile. Service outages, which constitute inadequate pressure for domestic and commercial use are projected to increase by 16%–26% above the baseline under maximum temperature conditions. The exceedance of baseline failures, when compounded across a large metro region, reveals potential challenges for budgeting, management, and maintenance. An exploration of the mitigation potential of adaptation strategies shows that expedited repair times are capable of offsetting the additional outages from climate change, but will come with a cost.  more » « less
Award ID(s):
1934933 1444755 1360509
PAR ID:
10376887
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
2
Issue:
4
ISSN:
2634-4505
Page Range / eLocation ID:
Article No. 045002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract   Rapid adaptation is necessary to maintain, let alone expand, access to reliable, safe drinking water in the face of climate change. Existing research focuses largely on the role, priorities, and incentives of local managers to pursue adaptation strategies while mostly neglecting the role of the broader public, despite the strong public support required to fund and implement many climate adaptation plans. In this paper, we interrogate the relationship between personal experiences of household water supply impacts from extreme weather events and hazard exposure with individual concern about future supply reliability among a statewide representative sample of California households. We find that more than one-third of Californians report experiencing impacts of climate change on their household water supplies and show that these reported impacts differently influence residents’ concern about future water supply reliability, depending on the type of event experienced. In contrast, residents’ concern about future water supplies is not significantly associated with hazard exposure. These findings emphasize the importance of local managers’ attending to not only how climate change is projected to affect their water resources, but how, and whether, residents perceive these risks. The critical role of personal experience in increasing concern highlights that post-extreme events with water supply impacts may offer a critical window to advance solutions. Managers should not assume, however, that all extreme events will promote concern in the same way or to the same degree. 
    more » « less
  2. The rapid growth of demand in agricultural production has created water scarcity issues worldwide. Simultaneously, climate change scenarios have projected that more frequent and severe droughts are likely to occur. Adaptive water resources management has been suggested as one strategy to better coordinate surface water and groundwater resources (i.e., conjunctive water use) to address droughts. In this study, we enhanced an aggregated water resource management tool that represents integrated agriculture, water, energy, and social systems. We applied this tool to the Yakima River Basin (YRB) in Washington State, USA. We selected four indicators of system resilience and sustainability to evaluate four adaptation methods associated with adoption behaviors in alleviating drought impacts on agriculture under RCP4.5 and RCP 8.5 climate change scenarios. We analyzed the characteristics of four adaptation methods, including greenhouses, crop planting time, irrigation technology, and managed aquifer recharge as well as alternating supply and demand dynamics to overcome drought impact. The results show that climate conditions with severe and consecutive droughts require more financial and natural resources to achieve well-implemented adaptation strategies. For long-term impact analysis, managed aquifer recharge appeared to be a cost-effective and easy-to-adopt option, whereas water entitlements are likely to get exhausted during multiple consecutive drought events. Greenhouses and water-efficient technologies are more effective in improving irrigation reliability under RCP 8.5 when widely adopted. However, implementing all adaptation methods together is the only way to alleviate most of the drought impacts projected in the future. The water resources management tool helps stakeholders and researchers gain insights in the roles of modern inventions in agricultural water cycle dynamics in the context of interactive multi-sector systems. 
    more » « less
  3. We assessed sociodemographic disparities in basic service disruptions caused by Winter Storm Uri in Texas. We collected data through a bilingual telephone survey conducted in July 2021 (n  = 753). Being Black, having children, and renting one’s residence were associated with longer power outage durations; being Black was also associated with longer water outages. Our findings highlight the need to plan for and ameliorate inequitable service outages and their attendant health risks in climate change–related extreme weather events such as Uri. (Am J Public Health. 2023;113(1):30–34. https://doi.org/10.2105/AJPH.2022.307110 ) 
    more » « less
  4. Urban wastewater service provision is an important energy consumer as well as a potentially important energy producer. This study aims to advance understandings on the influence of climate change on the intra- and inter-annual patterns of wastewater treatment plants’ net life cycle energy consumption. Historic monthly operational data of a wastewater treatment plant in the northeast United States were obtained and its current net life cycle energy demand was investigated. Comprehensive multivariate and multiple linear regression analyses were then performed. The main climate variables (temperature, rainfall, and snowfall) and the wastewater characteristics (flow rate, water temperature, total suspended solids, 5-day biochemical oxygen demand, and chemical oxygen demand) were used to develop regression models for energy that is directly and indirectly consumed and generated at the treatment plant. Two different approaches, a lumped and a month-based method, for conducting the regression analysis were investigated. Whenever possible, these two approaches were combined to improve the predictive power of the regression models. The obtained result shows the treatment plant’s direct energy use consists of more than 86% of the total energy consumption currently. Various energy recovery strategies allow the treatment plant to offset more than 15% of its total energy consumption. The future annual wastewater influent of the plant was projected to decrease towards the end of the century under climate change, with a significantly larger seasonal variation. The influent wastewater quality is projected to decrease, leading to higher direct and indirect energy consumption for treatment. Projections of future intra-annual responses show that the seasonal variations of wastewater flowrate as well as the monthly cumulative energy demand can potentially experience a two-fold increase, resulting in more frequent system shocks and create operational difficulties. 
    more » « less
  5. null (Ed.)
    The electrical power system is the backbone of our nations critical infrastructure. It has been designed to withstand single component failures based on a set of reliability metrics which have proven acceptable during normal operating conditions. However, in recent years there has been an increasing frequency of extreme weather events. Many have resulted in widespread long-term power outages, proving reliability metrics do not provide adequate energy security. As a result, researchers have focused their efforts resilience metrics to ensure efficient operation of power systems during extreme events. A resilient system has the ability to resist, adapt, and recover from disruptions. Therefore, resilience has demonstrated itself as a promising concept for currently faced challenges in power distribution systems. In this work, we propose an operational resilience metric for modern power distribution systems. The metric is based on the aggregation of system assets adaptive capacity in real and reactive power. This metric gives information to the magnitude and duration of a disturbance the system can withstand. We demonstrate resilience metric in a case study under normal operation and during a power contingency on a microgrid. In the future, this information can be used by operators to make more informed decisions based on system resilience in an effort to prevent power outages. 
    more » « less