- Award ID(s):
- 1553726
- PAR ID:
- 10132005
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 38
- Issue:
- 12-13
- ISSN:
- 0278-3649
- Page Range / eLocation ID:
- 1329 to 1337
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper defines the research area of Diversity-enhanced Autonomy in Robot Teams (DART), a novel paradigm for the creation and design of policies for multi-robot coordination. While current approaches to multi-robot coordination have been successful in structured, well understood environments, they have not been successful in unstructured, uncertain environments, such as disaster response. The reason for this is not due to limitations in robot hardware, which has advanced significantly in the past decade, but in how multi-robot problems are solved. Even with significant advances in the field of multi-robot systems, the same problem-solving paradigm has remained: assumptions are made to simplify the problem, and a solution is optimized for those assumptions and deployed on the entire team. This results in brittle solutions that prove incapable if the original assumptions are invalidated. This paper introduces a new multi-robot problem-solving paradigm which relies on diverse control policies to make multi-robot systems more resilient to uncertain environments.more » « less
-
This paper presents a foundational framework for functional modeling of human-robot joint activity in dynamic and unstructured environments. Representing a model of work functions as a network allows for scalable analysis of functional dependencies that create coordination overhead in the human-robot system. Centrality of nodes and cycles in the network can reveal potential patterns of joint activity that point to alternate strategies for human-robot coordination. Analysis of these network structures can provide insight into how a human-robot system may synchronize their activity while managing coordination overhead. We illustrate the use of the framework with a model of collaborative navigation in disaster response, where re-evaluating goals as more information about the environment is identified as a key part of coordination. The modeling capabilities can aid in understanding the effects of coordination strategies and teaming configurations and inform the design of automation capabilities to better support collaborative capabilities.
-
We consider multi-robot service scenarios, where tasks appear at any time and in any location of the working area. A solution to such a service task problem requires finding a suitable task assignment and a collision-free trajectory for each robot of a multi-robot team. In cluttered environments, such as indoor spaces with hallways, those two problems are tightly coupled. We propose a decentralized algorithm for simultaneously solving both problems, called Hierarchical Task Assignment and Path Finding (HTAPF). HTAPF extends a previous bio-inspired Multi-Robot Task Allocation (MRTA) framework [1]. In this work, task allocation is performed on an arbitrarily deep hierarchy of work areas and is tightly coupled with a fully distributed version of the priority-based planning paradigm [12], using only broadcast communication. Specifically, priorities are assigned implicitly by the order in which data is received from nearby robots. No token passing procedure or specific schedule is in place ensuring robust execution also in the presence of limited probabilistic communication and robot failures.more » « less
-
In large scale coverage operations, such as marine exploration or aerial monitoring, single robot approaches are not ideal, as they may take too long to cover a large area. In such scenarios, multi-robot approaches are preferable. Furthermore, several real world vehicles are non-holonomic, but can be modeled using Dubins vehicle kinematics. This paper focuses on environmental monitoring of aquatic environments using Autonomous Surface Vehicles (ASVs). In particular, we propose a novel approach for solving the problem of complete coverage of a known environment by a multi-robot team consisting of Dubins vehicles. It is worth noting that both multi-robot coverage and Dubins vehicle coverage are NP-complete problems. As such, we present two heuristics methods based on a variant of the traveling salesman problem-k-TSP-formulation and clustering algorithms that efficiently solve the problem. The proposed methods are tested both in simulations to assess their scalability and with a team of ASVs operating on a 200 km 2 lake to ensure their applicability in real world.more » « less
-
We consider the problem of multi-robot sensor coverage, which deals with deploying a multi-robot team in an environment and optimizing the sensing quality of the overall environment. As real-world environments involve a variety of sensory information, and individual robots are limited in their available number of sensors, successful multi-robot sensor coverage requires the deployment of robots in such a way that each individual team member’s sensing quality is maximized. Additionally, because individual robots have varying complements of sensors and both robots and sensors can fail, robots must be able to adapt and adjust how they value each sensing capability in order to obtain the most complete view of the environment, even through changes in team composition. We introduce a novel formulation for sensor coverage by multi-robot teams with heterogeneous sensing capabilities that maximizes each robot's sensing quality, balancing the varying sensing capabilities of individual robots based on the overall team composition. We propose a solution based on regularized optimization that uses sparsity-inducing terms to ensure a robot team focuses on all possible event types, and which we show is proven to converge to the optimal solution. Through extensive simulation, we show that our approach is able to effectively deploy a multi-robot team to maximize the sensing quality of an environment, responding to failures in the multi-robot team more robustly than non-adaptive approaches.more » « less