skip to main content


Search for: All records

Award ID contains: 1610471

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    With the rapid development of the Internet of Things (IoT), computational workloads are gradually moving toward the internet edge for low latency. Due to significant workload fluctuations, edge data centers built in distributed locations suffer from resource underutilization and requires capacity underprovisioning to avoid wasting capital investment. The workload fluctuations, however, also make edge data centers more suitable for battery-assisted power management to counter the performance impact due to underprovisioning. In particular, the workload fluctuations allow the battery to be frequently recharged and made available for temporary capacity boosts. But, using batteries can overload the data center cooling system which is designed with a matching capacity of the power system. In this paper, we design a novel power management solution, DeepPM, that exploits the UPS battery and cold air inside the edge data center as energy storage to boost the performance. DeepPM uses deep reinforcement learning (DRL) to learn the data center thermal behavior online in a model-free manner and uses it on-the-fly to determine power allocation for optimum latency performance without overheating the data center. Our evaluation shows that DeepPM can improve latency performance by more than 50% compared to a power capping baseline while the server inlet temperature remains within safe operating limits (e.g., 32°C). 
    more » « less
  2. Contextual bandit is a classic multi-armed bandit setting, where side information (i.e., context) is available before arm selection. A standard assumption is that exact contexts are perfectly known prior to arm selection and only single feedback is returned. In this work, we focus on multi-feedback bandit learning with probabilistic contexts, where a bundle of contexts are revealed to the agent along with their corresponding probabilities at the beginning of each round. This models such scenarios as where contexts are drawn from the probability output of a neural network and the reward function is jointly determined by multiple feedback signals. We propose a kernelized learning algorithm based on upper confidence bound to choose the optimal arm in reproducing kernel Hilbert space for each context bundle. Moreover, we theoretically establish an upper bound on the cumulative regret with respect to an oracle that knows the optimal arm given probabilistic contexts, and show that the bound grows sublinearly with time. Our simula- tion on machine learning model recommendation further validates the sub-linearity of our cumulative regret and demonstrates that our algorithm outper- forms the approach that selects arms based on the most probable context. 
    more » « less
  3. Attacks based on power analysis have been long existing and studied, with some recent works focused on data exfiltration from victim systems without using conventional communications (e.g., WiFi). Nonetheless, prior works typically rely on intrusive direct power measurement, either by implanting meters in the power outlet or tapping into the power cable, thus jeopardizing the stealthiness of attacks. In this paper, we propose NoDE (Noise for Data Exfiltration), a new system for stealthy data exfiltration from enterprise desktop computers. Specifically, NoDE achieves data exfiltration over a building's power network by exploiting high-frequency voltage ripples (i.e., switching noises) generated by power factor correction circuits built into today's computers. Located at a distance and even from a different room, the receiver can non-intrusively measure the voltage of a power outlet to capture the high-frequency switching noises for online information decoding without supervised training/learning. To evaluate NoDE, we run experiments on seven different computers from top vendors and using top-brand power supply units. Our results show that for a single transmitter, NoDE achieves a rate of up to 28.48 bits/second with a distance of 90 feet (27.4 meters) without the line of sight, demonstrating a practically stealthy threat. Based on the orthogonality of switching noise frequencies of different computers, we also demonstrate simultaneous data exfiltration from four computers using only one receiver. Finally, we present a few possible defenses, such as installing noise filters, and discuss their limitations. 
    more » « less
  4. Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets and is typically unknown due to the lack of ground truth labels. This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications. In this paper, we address trustworthiness of DNNs by using post-hoc processing to monitor the true inference accuracy on a user’s dataset. Concretely, we propose a neural network-based accuracy monitor model, which only takes the deployed DNN’s softmax probability output as its input and directly predicts if the DNN’s prediction result is correct or not, thus leading to an estimate of the true inference accuracy. The accuracy monitor model can be pre-trained on a dataset relevant to the target application of interest, and only needs to actively label a small portion (1% in our experiments) of the user’s dataset for model transfer. For estimation robustness, we further employ an ensemble of monitor models based on the Monte-Carlo dropout method. We evaluate our approach on different deployed DNN models for image classification and traffic sign detection over multiple datasets (including adversarial samples). The result shows that our accuracy monitor model provides a close-to-true accuracy estimation and outperforms the existing baseline methods. 
    more » « less
  5. The ever increasing size of deep neural network (DNN) models once implied that they were only limited to cloud data centers for runtime inference. Nonetheless, the recent plethora of DNN model compression techniques have successfully overcome this limit, turning into a reality that DNN-based inference can be run on numerous resource-constrained edge devices including mobile phones, drones, robots, medical devices, wearables, Internet of Things devices, among many others. Naturally, edge devices are highly heterogeneous in terms of hardware specification and usage scenarios. On the other hand, compressed DNN models are so diverse that they exhibit different tradeoffs in a multi-dimension space, and not a single model can achieve optimality in terms of all important metrics such as accuracy, latency and energy consumption. Consequently, how to automatically select a compressed DNN model for an edge device to run inference with optimal quality of experience (QoE) arises as a new challenge. The state-of-the-art approaches either choose a common model for all/most devices, which is optimal for a small fraction of edge devices at best, or apply device-specific DNN model compression, which is not scalable. In this paper, by leveraging the predictive power of machine learning and keeping end users in the loop, we envision an automated device-level DNN model selection engine for QoE-optimal edge inference. To concretize our vision, we formulate the DNN model selection problem into a contextual multi-armed bandit framework, where features of edge devices and DNN models are contexts and pre-trained DNN models are arms selected online based on the history of actions and users' QoE feedback. We develop an efficient online learning algorithm to balance exploration and exploitation. Our preliminary simulation results validate our algorithm and highlight the potential of machine learning for automating DNN model selection to achieve QoE-optimal edge inference. 
    more » « less