Cloud platforms’ rapid growth raises significant concerns about their electricity consumption and resulting carbon emissions. Power capping is a known technique for limiting the power consumption of data centers where workloads are hosted. Today’s data center computer clusters co-locate latency-sensitive web and throughput-oriented batch workloads. When power capping is necessary, throttling only the batch tasks without restricting latency-sensitive web workloads is ideal because guaranteeing low response time for latency-sensitive workloads is a must due to Service-Level Objectives (SLOs) requirements. This paper proposes PADS, a hardware-agnostic workload-aware power capping system. Due to not relying on any hardware mechanism such as RAPL and DVFS, it can keep the power consumption of clusters equipped with heterogeneous architectures such as x86 and ARM below the enforced power limit while minimizing the impact on latency-sensitive tasks. It uses an application-performance model of both latency-sensitive and batch workloads to ensure power safety with controllable performance. Our power capping technique uses diagonal scaling and relies on using the control group feature of the Linux kernel. Our results indicate that PADS is highly effective in reducing power while respecting the tail latency requirement of the latency-sensitive workload. Furthermore, compared to state-of-the-art solutions, PADS demonstrates lower P95 latency, accompanied by a 90% higher effectiveness in respecting power limits.
more »
« less
DeepPM: Efficient Power Management in Edge Data Centers using Energy Storage
With the rapid development of the Internet of Things (IoT), computational workloads are gradually moving toward the internet edge for low latency. Due to significant workload fluctuations, edge data centers built in distributed locations suffer from resource underutilization and requires capacity underprovisioning to avoid wasting capital investment. The workload fluctuations, however, also make edge data centers more suitable for battery-assisted power management to counter the performance impact due to underprovisioning. In particular, the workload fluctuations allow the battery to be frequently recharged and made available for temporary capacity boosts. But, using batteries can overload the data center cooling system which is designed with a matching capacity of the power system. In this paper, we design a novel power management solution, DeepPM, that exploits the UPS battery and cold air inside the edge data center as energy storage to boost the performance. DeepPM uses deep reinforcement learning (DRL) to learn the data center thermal behavior online in a model-free manner and uses it on-the-fly to determine power allocation for optimum latency performance without overheating the data center. Our evaluation shows that DeepPM can improve latency performance by more than 50% compared to a power capping baseline while the server inlet temperature remains within safe operating limits (e.g., 32°C).
more »
« less
- PAR ID:
- 10295689
- Date Published:
- Journal Name:
- 2020 IEEE 13th International Conference on Cloud Computing (CLOUD)
- Page Range / eLocation ID:
- 370 to 379
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Data center operators generally overprovision IT and cooling capacities to address unexpected utilization increases that can violate service quality commitments. This results in energy wastage. To reduce this wastage, we introduce HCP (Holistic Capacity Provisioner), a service latency aware management system for dynamically provisioning the server and cooling capacity. Short-term load prediction is used to adjust the online server capacity to concentrate the workload onto the smallest possible set of online servers. Idling servers are completely turned off based on a separate long-term utilization predictor. HCP targets data centers that use chilled air cooling and varies the cooling provided commensurately, using adjustable aperture tiles and speed control of the blower fans in the air handler. An HCP prototype supporting a server heterogeneity is evaluated with real-world workload traces/requests and realizes up to 32% total energy savings while limiting the 99th-percentile and average latency increases to at most 6.67% and 3.24%, respectively, against a baseline system where all servers are kept online.more » « less
-
null (Ed.)Edge data centers are an appealing place for telecommunication providers to offer in-network processing such as VPN services, security monitoring, and 5G. Placing these network services closer to users can reduce latency and core network bandwidth, but the deployment of network functions at the edge poses several important challenges. Edge data centers have limited resource capacity, yet network functions are re-source intensive with strict performance requirements. Replicating services at the edge is needed to meet demand, but balancing the load across multiple servers can be challenging due to diverse service costs, server and flow heterogeneity, and dynamic workload conditions. In this paper, we design and implement a model-based load balancer EdgeBalance for edge network data planes. EdgeBalance predicts the CPU demand of incoming traffic and adaptively distributes flows to servers to keep them evenly balanced. We overcome several challenges specific to network processing at the edge to improve throughput and latency over static load balancing and monitoring-based approaches.more » « less
-
Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need. As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service. Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of frequency regulation provision. We present PowerMorph , a tight QoS-aware data center power-reshaping framework, which enables commodity servers to provide practical frequency regulation service. The key behind PowerMorph is using “complementary workload” as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even completely eliminate the data center electricity bill and provide a net profit.more » « less
-
Escalating application demand and the end of Dennard scaling have put energy management at the center of cloud operations. Because of the huge cost and long lead time of provisioning new data centers, operators want to squeeze as much use out of existing data centers as possible, often limited by power provisioning fixed at the time of construction. Workload demand spikes and the inherent variability of renewable energy, as well as increased power unreliability from extreme weather events and natural disasters, make the data center power management problem even more challenging. We believe it is time to build a power control plane to provide fine-grained observability and control over data center power to operators. Our goal is to help make data centers substantially more elastic with respect to dynamic changes in energy sources and application needs, while still providing good performance to applications. There are many use cases for cloud power control, including increased power oversubscription and use of green energy, resilience to power failures, large-scale power demand response, and improved energy efficiency.more » « less
An official website of the United States government

