skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-functional Team Course Design Project in Engineering
This work-in-progress research paper explores the intersection of cross-functional teamwork and design thinking within the course design process through collaborative autoethnography. Collaborative autoethnography uses individual and dialogic reflections to provide a detailed and nuanced exploration of experiences within a culture (e.g., a course design team) and generate insights that might inform broader community of individuals who experience related cultures. In this study, we investigate how individual educators attempt to shape and are shaped by a unique team course design process in electrical and computer engineering. The participant-researchers in this study are three electrical and computer engineering faculty members and one engineering education researcher who have participated in a six-semester-long course redesign effort. The effort has emphasized building and utilizing a new cross-functional team approach, imbued with design thinking strategies, to support improved professional formation and student-centeredness within an embedded systems course for electrical and computer engineering students. In this study, data collection and analysis were integrated and iterative. This process engaged cycles of setting writing prompts, individual writing, group discussion and reflection, and setting new writing prompts. This process was repeated as participant-researchers and the team as a whole refined their insights, explored emergent topics, and connected their observations to external research and scholarship. The autoethnographic process is ongoing, but five themes have emerged that describe key features of the team course design process and experience: (1) uncertainty, (2) navigating the team, (3) navigating the self, (4) navigating the system, and (5) process. The paper features a collection of participant-researcher reflections related to these emergent themes.  more » « less
Award ID(s):
1623125
PAR ID:
10337953
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2020 ASEE Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Design thinking is a robust framework for creatively and effectively identifying and solving important human problems. While design thinking is commonly associated with fields like industrial design, it can be applied to many problem types. For example, several recent examples demonstrate the applicability of design thinking to the design and development of educational materials, courses, and systems. These results suggest that design thinking could be used as a framework to (re)design and develop effective engineering courses. The goal of this project is to understand how nine educators from different backgrounds did or did not use design thinking to redesign a sophomore-level electrical and computer engineering course. The primary source of data was 21 transcribed audio recordings of design meetings and is supplemented with interviews, reflections, and course artifacts. Thematic analysis revealed 10 themes that represent connections and disconnections between the process used and a common five-stage design thinking process (empathize, define, ideate, prototype, and test). These themes demonstrate some of the opportunities and challenges related to design thinking within an engineering course design setting. In particular, they suggest that engineering course design is a relevant context for design thinking, but one to which design thinking methods do not always naturally translated. Future work should focus on better understanding unique applications of design thinking within engineering course design and methods that might to support more designerly behaviors among engineering educators. 
    more » « less
  2. Electrical and computer engineering technologies have evolved into dynamic, complex systems that profoundly change the world we live in. Designing these systems requires not only technical knowledge and skills but also new ways of thinking and the development of social, professional and ethical responsibility. A large electrical and computer engineering department at a Midwestern public university is transforming to a more agile, less traditional organization to better respond to student, industry and society needs. This is being done through new structures for faculty collaboration and facilitated through departmental change processes. Ironically, an impetus behind this effort was a failed attempt at department-wide curricular reform. This failure led to the recognition of the need for more systemic change, and a project emerged from over two years of efforts. The project uses a cross-functional, collaborative instructional model for course design and professional formation, called X-teams. X-teams are reshaping the core technical ECE curricula in the sophomore and junior years through pedagogical approaches that (a) promote design thinking, systems thinking, professional skills such as leadership, and inclusion; (b) contextualize course concepts; and (c) stimulate creative, socio-technical-minded development of ECE technologies. An X-team is comprised of ECE faculty members including the primary instructor, an engineering education and/or design faculty member, an industry practitioner, context experts, instructional specialists (as needed to support the process of teaching, including effective inquiry and inclusive teaching) and student teaching assistants. X-teams use an iterative design thinking process and reflection to explore pedagogical strategies. X-teams are also serving as change agents for the rest of the department through communities of practice referred to as Y-circles. Y-circles, comprised of X-team members, faculty, staff, and students, engage in a process of discovery and inquiry to bridge the engineering education research-to-practice gap. Research studies are being conducted to answer questions to understand (1) how educators involved in X-teams use design thinking to create new pedagogical solutions; (2) how the middle years affect student professional ECE identity development as design thinkers; (3) how ECE students overcome barriers, make choices, and persist along their educational and career paths; and (4) the effects of department structures, policies, and procedures on faculty attitudes, motivation and actions. This paper will present the efforts that led up to the project, including failures and opportunities. It will summarize the project, describe related work, and present early progress implementing new approaches. 
    more » « less
  3. This project evaluates if and how an intervention to design a K-12 STEM activity related to water chemistry impacts the innovation self-efficacy (ISE) of junior students enrolled in a required environmental engineering course. ISE is defined as having five behavioral components: questioning, observing, experimenting, idea networking, and associational thinking. In this course, the K-12 STEM activity is designed with a team of 3 to 5 students. The activity requires that the students develop an innovative activity that demonstrates environmental engineering concepts such as acid mine drainage, ocean acidification, and contaminant removal. The student projects are scaffolded throughout the 10 weeks via intermediate submissions and meetings with a K-12 STEM teacher and design mentors. In fall 2022 a pilot of the study was conducted and relied on a quantitative survey instrument that measured ISE, innovation interest (INT), and future innovative work interest (IW). Based on the preliminary findings of factor structure, item reliability, and face validity evaluated by two faculty and two undergraduate students, small changes were made to the quantitative assessment instrument. The revised survey was deployed in the fall of 2023 in a required junior-level test course and a senior-level control course. The senior-level control course consisted of students who took the junior-level course with the K-12 STEM activity in the previous year. In 2023 the K-12 STEM activity intervention also included additional scaffolding through the addition of 3 team-based and 2 individual reflections to understand the process of ISE formation. Pre-post comparisons of the quantitative survey items will be conducted for individual students in the test and control courses. Team and individual reflections from the test course will be analyzed after the course. Potential demographic differences in ISE will be explored. Potential team-level influences will also be evaluated to understand the impact of a team’s ISE score on enhancing an individual team member’s ISE gain. Focus groups and individual interviews with students who participated in the test course will take place in spring 2024. The ISE, INT, and IW of environmental engineering students will be further assessed in spring 2024 through the ISE survey in the environmental engineering capstone design course and a junior-level creativity and entrepreneurship design course. This assessment will compare two different learning experiences on ISE, INT, and IW, the K-12 STEM education activity design with a semester-long, group-based technical design experience. Preliminary results will be presented in the NSF Grantees Poster Session. 
    more » « less
  4. Funded by the National Science Foundation (NSF) Racial Equity in STEM Education Program, this project aims to deeply interrogate the influence and pervasiveness of Whiteness in engineering culture. While there has been substantial research into the masculinity of engineering, Whiteness has received far less attention. We claim the centrality of Whiteness in engineering curricula informs the culture, climate, and discourse of engineering education, leading to an exclusionary culture within engineering as reflected by the lack of diversity and lower retention of students and faculty of color, and contributes to systemic barriers negatively impacting racial equity. Moving towards racial equity in engineering education requires a fundamental shift in thinking in two important ways: 1) we must reframe how we think about underserved populations from minority to minoritized by a dominant discourse, and 2) to begin to dismantle the impacts of Whiteness, we must first make this barrier visible. In the first year of this project, the diverse team of PIs began to explore scripts of Whiteness in engineering education by conducting a collaborative autoethnography through documenting and analyzing their own experiences facing, enacting, and challenging scripts of Whiteness in engineering spaces. A collaborative autoethnography (CAE) takes a collaborative approach to the process of critical self reflection and can be conducted in many forms, such as such as collecting personal memory data (e.g., journaling), interviewing each other, facilitating intentional dialogue, or observing each other (e.g., in the classroom). CAE is not a linear process, but requires an ongoing dialogue (conversations, negotiations, or even arguments) between researcher team members over a long period (at least months, if not years). Our diverse viewpoints and years-long experience working together facilitated rich conversations that let us interrogate the ways in which Whiteness reveals its form differently depending on one’s positionality. In the later years of the project, we will create a faculty development program intended to help engineering faculty develop their critical consciousness and begin to decenter Whiteness from their ways of thinking and discourses (i.e., beliefs, attitudes, value systems, actions, etc.) so they can begin to critically think about promoting and enacting practices that move engineering education toward racial equity. Although the pathway to critical consciousness is not linear, it is a one-way street; once faculty begin to see the systemic barriers (such as those created by scripts of Whiteness) around them, there is no going back. In the long term, we hope to lay the groundwork for recognizing, interrogating, and eventually dismantling forces of systemic oppression in engineering higher education. 
    more » « less
  5. Education literature has long emphasized the compounding benefits of reflective practice. Although reflection has largely been used as a tool for developing writing skills, contemporary research has explored its contributions to other disciplines including professional occupations such as nursing, teaching and engineering. Reflective assignments encourage engineering students to think critically about the impact engineers can and should have in the global community and their future role in engineering. The Department of Electrical and Computer Engineering at a small liberal arts college adopted ePortfolios in a first-year design course to encourage students to reframe their experiences and cultivate their identities as engineers. Our recent work demonstrated that students who create ePortfolios cultivate habits of reflective thinking that continue in subsequent courses within our program’s design sequence. However, student ability to transfer reflective habits across domains has remained unclear and encouraging critical engagement beyond the focused scope of technical content within more traditional core engineering courses is often difficult. In this work, we analyze students’ ability to transfer habits of reflective thinking across domains from courses within a designfocused course sequence to technical content-focused courses within a degree program. Extending reflection into core courses in a curriculum is important for several reasons. First, it stimulates metacognition which enables students to transfer content to future courses. Second, it builds students’ ability to think critically about technical subject matter. And third, it contributes to the ongoing development of their identities as engineers. Particularly for students traditionally underrepresented in engineering, the ability to integrate prior experiences and interests into one’s evolving engineering identity may lead to better retention and sense of belonging in the profession. In the first-year design course, electrical and computer engineering students (N=28) at a liberal arts university completed an ePortfolio assignment to explore the discipline. Using a combination of inductive and deductive coding techniques, multiple members of our team coded student reports and checked for intercoder reliability. Previously, we found that students’ reflection dramatically improved in the second-year design course [1]. Drawing upon Hatton and Smith’s (1995) categorizations of reflective thinking [2], we observed that students were particularly proficient in Dialogic Reflection, or reflection that relates to their own histories, interests, and experiences. In this paper, we compare the quality of student reflections in the second-year design course with those in a second-year required technical course to discover if reflective capabilities have transferred into a technical domain. We discovered that students are able to transfer reflective thinking across different types of courses, including those emphasizing technical content, after a single ePortfolio activity. Furthermore, we identified a similar pattern of improvement most notably in Dialogic Reflection. This finding indicates that students are developing sustained habits of reflective thinking. As a result, we anticipate an increase in their ability to retain core engineering concepts throughout the curriculum. Our future plans are to expand ePortfolio usage to all design courses as well as some 
    more » « less