skip to main content


Title: A Tree-Structured Neural Network Model for Household Energy Breakdown
Residential buildings constitute roughly one-fourth of the total energy use across the globe. Numerous studies have shown that providing an energy breakdown increases residents' awareness of energy use and can help save up to 15% energy. A significant amount of prior work has looked into source-separation techniques collectively called non-intrusive load monitoring (NILM), and most prior NILM research has leveraged high-frequency household aggregate data for energy breakdown. However, in practice most smart meters only sample hourly or once every 15 minutes, and existing NILM techniques show poor performance at such a low sampling rate. In this paper, we propose a TreeCNN model for energy breakdown on low frequency data. There are three key insights behind the design of our model: i) households consume energy with regular temporal patterns, which can be well captured by filters learned in CNNs; ii) tree structure isolates the pattern learning of each appliance that helps avoid magnitude variance problem, while preserves relationship among appliances; iii) tree structure enables the separation of known appliance from unknown ones, which de-noises the input time series for better appliance-level reconstruction. Our TreeCNN model outperformed seven existing baselines on a public benchmark dataset with lower estimation error and higher accuracy on detecting the active states of appliances.  more » « less
Award ID(s):
1646501 1718216 1553568
NSF-PAR ID:
10106916
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The World Wide Web Conference
Page Range / eLocation ID:
2872 to 2878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis. 
    more » « less
  2. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less
  3. Homes constitute roughly one-third of the total energy usage worldwide. Providing an energy breakdown – energy consumption per appliance, can help save up to 15% energy. Given the vast differences in energy consumption patterns across different regions, existing energy breakdown solutions require instrumentation and model training for each geographical region, which is prohibitively expensive and limits the scalability. In this paper, we propose a novel region independent energy breakdown model via statistical transfer learning. Our key intuition is that the heterogeneity in homes and weather across different regions most significantly impacts the energy consumption across regions; and if we can factor out such heterogeneity, we can learn region independent models or the homogeneous energy breakdown components for each individual appliance. Thus, the model learnt in one region can be transferred to another region. We evaluate our approach on two U.S. cities having distinct weather from a publicly available dataset. We find that our approach gives better energy breakdown estimates requiring the least amount of instrumented homes from the target region, when compared to the state-of-the-art. 
    more » « less
  4. Fine-grained monitoring of everyday appliances can provide better feedback to the consumers and motivate them to change behavior in order to reduce their energy usage. It also helps to detect abnormal power consumption events, long-term appliance malfunctions and potential safety concerns. Commercially available plug meters can be used for individual appliance monitoring but for an entire house, each such individual plug meters are expensive and tedious to setup. Alternative methods relying on Non-Intrusive Load Monitoring techniques help disaggregate electricity consumption data and learn about the individual appliance's power states and signatures. However fine-grained events (e.g., appliance malfunctions, abnormal power consumption, etc.) remain undetected and thus inferred contexts (such as safety hazards etc.) become invisible. In this work, we correlate an appliance's inherent acoustic noise with its energy consumption pattern individually and in presence of multiple appliances. We initially investigate classification techniques to establish the relationship between appliance power and acoustic states for efficient energy disaggregation and abnormal events detection. While promising, this approach fails when there are multiple appliances simultaneously in `ON' state. To further improve the accuracy of our energy disaggregation algorithm, we propose a probabilistic graphical model, based on a variation of Factorial Hidden Markov Model (FHMM) for multiple appliances energy disaggregation. We combine our probabilistic model with the appliances acoustic analytics and postulate a hybrid model for energy disaggregation. Our approach helps to improve the performance of energy disaggregation algorithms and provide critical insights on appliance longevity, abnormal power consumption, consumer behavior and their everyday lifestyle activities. We evaluate the performance of our proposed algorithms on real data traces and show that the fusion of acoustic and power signatures can successfully detect a number of appliances with 95% accuracy. 
    more » « less
  5. To promote energy-efficient operations in residential and office buildings, non-intrusive load monitoring (NILM) techniques have been proposed to infer the fine-grained power consumption and usage patterns of appliances from power-line measurement data. Fine-grained monitoring of everyday appliances (such as toasters and coffee makers) can not only promote energy-efficient building operations, but also provide unique insights into the context and activities of individuals. Current building-level NILM techniques are unable to identify the consumption characteristics of relatively low-load appliances, whereas smart-plug based solutions incur significant deployment and maintenance costs. In this paper, we investigate an intermediate architecture, where smart circuit breakers provide measurements of aggregate power consumption at room (or section) level granularity. We then investigate techniques to identify the usage and energy consumption of individual appliances from such measurements. We first develop a novel correlation-based approach called CBPA to identify individual appliances based on both their unique transient and steady-state power signatures. While promising, CBPA fails when the set of candidate appliances is too large. To further improve the accuracy of appliance level usage estimation, we then propose a hybrid system called AARPA, which uses mobile sensing to first infer high-level activities of daily living (ADLs), and then uses knowledge of such ADLs to effectively reduce the set of candidate appliances that potentially contribute to the aggregate readings at any point. We evaluate two variants of this algorithm, and show, using real-life data traces gathered from 10 domestic users, that our fusion of mobile and power-line sensing is very promising: it identified all devices that were used in each data trace, and it identified the usage duration and energy consumption of low-load consumer appliances with 87% accuracy. 
    more » « less