Abstract Precipitation amount (A), frequency (F), intensity (I), and duration (D) are important properties of precipitation, but their estimates are sensitive to data resolution. This study investigates this resolution dependence, and the influences of different model physics, by analyzing simulations by the Community Atmospheric Model (CAM) version 4 (CAM4) and version 5 (CAM5) with varying grid sizes from ~0.25 to 2.0°. Results show that both CAM4 and CAM5 greatly overestimate F and D but underestimate I at all resolutions, despite realistic A. These biases partly result from too much parameterized (convective) precipitation with high F and D but low I. Different cloud microphysics schemes contribute to the precipitation differences between CAM4 and CAM5. The A, F, I, and D of convective and nonconvective precipitation react differently to grid‐size decreases, leading to the large decreases in F and D but increases in the I for total precipitation as model resolution increases. This resolution dependence results from the increased probability of precipitation over a larger area (area aggregation effect, which is smaller than in observations) and the varying performance of model physics under changing resolution (model adjustment effect), which roughly enhances the aggregation‐induced dependence. Finer grid sizes not only increase resolved precipitation, which has higher intensity and thus improves overall precipitation intensity in CAM, but also reduce the area aggregation effect. Thus, the long‐standingdrizzlingproblem in climate models may be mitigated by increasing model resolution and modifying model physics to suppress parameterized convective precipitation and enhance resolved nonconvective precipitation.
more »
« less
On resolution sensitivity in the Community Atmosphere Model
Abstract Advances in high‐performance computing make it possible to run atmospheric general circulation models (AGCMs) over an increasingly wider range of grid resolutions, using either globally uniform or variable‐resolution grids. In principle, this is an exciting opportunity to resolve atmospheric process and scales in a global model and in unprecedented detail, but in practice this grid flexibility is incompatible with the non‐ or weakly converging solutions with increasing horizontal resolution that have long characterized AGCMs. In the the Community Atmosphere Model (CAM), there are robust sensitivities to horizontal resolution that have persisted since the model was first introduced over thirty years ago; the atmosphere progressively dries and becomes less cloudy with resolution, and parametrized deep convective precipitation decreases at the expense of stratiform precipitation. This study documents a convergence experiment using CAM, version 6, and argues that a unifying cause, the sensitivity of resolved dynamical modes to native grid resolution, feeds back into other model components and explains these robust sensitivities to resolution. The increasing magnitudes of resolved vertical velocities with resolution are shown to fit an analytic scaling derived for the equations of motion at hydrostatic scales. This trend in vertical velocities results in an increase in resolved upward moisture fluxes at cloud base, balanced by an increase in stratiform precipitation rates with resolution. Compensating, greater magnitude subsiding motion with resolution has previously been shown to dry out the atmosphere and reduce cloud cover. Here, it is shown that both the increase in condensational heating from stratiform cloud formation and greater subsidence drying contribute to an increase in atmospheric stability with resolution, reducing the activity of parametrized convection. The impact of changing the vertical velocity field with native grid resolution cannot be ignored in any effort to recover convergent solutions in AGCMs, and, in particular, the development of scale‐aware physical parametrizations.
more »
« less
- PAR ID:
- 10371242
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Quarterly Journal of the Royal Meteorological Society
- Volume:
- 146
- Issue:
- 733
- ISSN:
- 0035-9009
- Page Range / eLocation ID:
- p. 3789-3807
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a new two-dimensional, bin-scheme microphysical model of cloud formation in the atmospheres of hot Jupiters that includes the effects of longitudinal gas and cloud transport. We predict cloud particle size distributions as a function of planetary longitude and atmospheric height for a grid of hot Jupiters with equilibrium temperatures ranging from 1000 to 2100 K. The predicted 2D cloud distributions vary significantly from models that do not consider horizontal cloud transport and we discuss the microphysical and transport timescales that give rise to the differences in 2D versus 1D models. We find that the horizontal advection of cloud particles increases the cloud formation efficiency for nearly all cloud species and homogenizes cloud distributions across the planets in our model grid. In 2D models, certain cloud species are able to be transported and survive on the daysides of hot Jupiters in cases where 1D models would not predict the existence of clouds. We demonstrate that the depletion of condensible gas species varies as a function of longitude and atmospheric height across the planet, which impacts the resultant gas-phase chemistry. Finally, we discuss various model sensitivities including the sensitivity of cloud properties to microphysical parameters, which we find to be substantially less than the sensitivity to the atmospheric thermal structure and horizontal and vertical transport of condensible material.more » « less
-
Abstract Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts.more » « less
-
Abstract To explore the interactions among column processes in the Community Atmosphere Model (CAM), the single‐column version of CAM (SCAM) is integrated for 1000 days in radiative‐convective equilibrium (RCE) with tropical values of boundary conditions, spanning a parameter or configuration space of model physics versions (v5 vs. v6), vertical resolution (standard and 60 levels), sea surface temperature (SST), and some interpretation‐driven experiments. The simulated time‐mean climate is reasonable, near observations and RCE of a cyclic cloud‐resolving model. Updraft detrainment in the deep convection scheme produces distinctive grid‐scale structures in humidity and cloud, which also interact with radiative transfer processes. These grid artifacts average out in multi‐column RCE results reported elsewhere, illustrating the nuts‐and‐bolts interpretability that SCAM adds to the hierarchy of model configurations. Multi‐day oscillations of precipitation arise from descent of warm convection‐capping layers starting near the tropopause, eventually reset by a burst of convective deepening. Experiments reveal how these oscillations depend critically on an internal parameter that controls the number of neutral buoyancy levels allowed for determining cloud top and computing dilute convective available potential energy in the deep convection scheme, and merely modified a little by disabling cloud‐base radiation (heating of cloud base). This strong dependence of transient behavior in 1D on this parameter will be tested in the second part of this work, in which SCAM is coupled to a parameterized dynamics of two‐dimensional, linearized gravity wave, and in the 3D simulations in future study.more » « less
-
Abstract This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution.more » « less
An official website of the United States government
