skip to main content

Search for: All records

Award ID contains: 1662968

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper is pedagogic in nature, meant to provide researchers a single reference for learning how to apply the emerging literature on differential variational inequalities to the study of dynamic traffic assignment problems that are Cournot-like noncooperative games. The paper is presented in a style that makes it accessible to the widest possible audience. In particular, we apply the theory of differential variational inequalities (DVIs) to the dy- namic user equilibrium (DUE) problem. We first show that there is a variational inequality whose necessary conditions describe a DUE. We restate the flow conservation constraint associated with each origin-destination pair as a first-order two-point boundary value problem, thereby leading to a DVI representation of DUE; then we employ Pontryagin-type necessary conditions to show that any DVI solution is a DUE. We also show that the DVI formulation leads directly to a fixed-point algorithm. We explain the fixed-point algorithm by showing the calculations intrinsic to each of its steps when applied to simple examples.
  2. Dynamic user equilibrium (DUE) is the most widely studied form of dynamic traffic assignment (DTA), in which road travelers engage in a non-cooperative Nash-like game with departure time and route choices. DUE models describe and predict the time-varying traffic flows on a network consistent with traffic flow theory and travel behavior. This paper documents theoretical and numerical advances in synthesizing traffic flow theory and DUE modeling, by presenting a holistic computational theory of DUE, which is numerically implemented in a MATLAB package. In particular, the dynamic network loading (DNL) sub-problem is formulated as a system of differential algebraic equations based on the Lighthill-Whitham-Richards fluid dynamic model, which captures the formation, propagation and dissipation of physical queues as well as vehicle spillback on networks. Then, the fixed-point algorithm is employed to solve the DUE problems with simultaneous route and departure time choices on several large-scale networks. We make openly available the MATLAB package, which can be used to solve DUE problems on user-defined networks, aiming to not only facilitate benchmarking a wide range of DUE algorithms and solutions, but also offer researchers a platform to further develop their own models and applications. The MATLAB package and computational examples are available online.
  3. Dynamic traffic assignment models rely on a network performance module known as dynamic network loading (DNL), which expresses flow propagation, flow conservation, and travel delay at a network level. The DNL defines the so-called network delay operator , which maps a set of path departure rates to a set of path travel times (or costs). It is widely known that the delay operator is not available in closed form, and has undesirable properties that severely complicate DTA analysis and computation, such as discontinuity, nondifferentiability, nonmonotonicity, and computational inefficiency. This paper proposes a fresh take on this important and difficult issue, by providing a class of surrogate DNL models based on a statistical learning method known as Kriging . We present a metamodeling framework that systematically approximates DNL models and is flexible in the sense of allowing the modeler to make trade-offs among model granularity, complexity, and accuracy. It is shown that such surrogate DNL models yield highly accurate approximations (with errors below 8%) and superior computational efficiency (9 to 455 times faster than conventional DNL procedures such as those based on the link transmission model). Moreover, these approximate DNL models admit closed-form and analytical delay operators, which are Lipschitz continuousmore »and infinitely differentiable, with closed-form Jacobians. We provide in-depth discussions on the implications of these properties to DTA research and model applications.« less
  4. Data gathering to support metamodeling for DUE and DNL.
  5. Shows important properties of delay operator for computing.
  6. This paper establishes continuity of one form of path delay operator, allowing mathematical study of algorithms for both DNL and DUE.
  7. This paper explores how DUE data may be efficiently gathered to support statistical learning.