skip to main content

Search for: All records

Award ID contains: 1665029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Macroscopically homogeneous mixtures of p -nitroanisole ( p NA) and mesitylene (MES) can be selectively heated using microwave (MW) energy. The p NA solutes agglomerate into distinct phase domains on the attoliter-scale (1 aL = 10 −18 L), and these agglomerates can be MW-heated selectively to temperatures that far exceed the boiling point of the surrounding MES solvent. Here, a 1 : 20 mixture of p NA : MES is used as a mixed solvent for aryl Claisen rearrangement of allyl naphthyl ether (ANE). ANE itself does not heat effectively in the MW, but selective MW heating of p NA allows for transfer of thermal energy to ANE to accelerate rearrangement kinetics above what would be expected based on Arrhenius kinetics and the measured bulk solution temperature. This focused study builds on prior work and highlights 1 : 20 p NA : MES as a mixed solvent system to consider for strategically exploiting MW-specific thermal effects.
    Free, publicly-accessible full text available February 2, 2023
  2. A high-temperature retro-Diels–Alder reaction is accelerated by microwave (MW) heating to rates higher than expected based on Arrhenius kinetics and the measured temperature of the reaction mixture. Observations are consistent with selective MW heating of the polar reactant relative to other, less polar components of the reaction mixture.
  3. After some initial false-starts, the international synthetic organic community is slowing warming to the possibility of certain strategic advantages of microwave heating in chemical synthesis.