Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper the authors produce a projective indecomposable module for the Frobenius kernel of a simple algebraic group in characteristic p that is not the restriction of an indecomposable tilting module. This yields a counterexample to Donkin’s longstanding Tilting Module Conjecture. The authors also produce a Weyl module that does not admit a p -Weyl filtration. This answers an old question of Jantzen, and also provides a counterexample to the {(p,r)} -Filtration Conjecture.more » « less
-
The authors proved that a Weyl module for a simple algebraic group is irreducible over every field if and only if the module is isomorphic to the adjoint representation for $$E_{8}$$ or its highest weight is minuscule. In this paper, we prove an analogous criteria for irreducibility of Weyl modules over the quantum group $$U_{\zeta}({{\mathfrak g}})$$ where $${\mathfrak g}$$ is a complex simple Lie algebra and $$\zeta$$ ranges over roots of unity.more » « less
An official website of the United States government

Full Text Available