skip to main content


Search for: All records

Award ID contains: 1714425

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present a method of Gröbner bases with respect to several term orderings and use it to obtain new results on multivariate dimension polynomials of inversive difference modules. Then we use the difference structure of the module of Kahler differentials associated with a finitely generated inversive difference field extension of a given difference transcendence degree to describe the form of a multivariate difference dimension polynomial of the extension. 
    more » « less
  2. null (Ed.)
    Let K be an inversive difference-differential field and L a (not necessarily inversive) finitely generated difference-differential field extension of K. We consider the natural filtration of the extension L/K associated with a finite system \eta of its difference-differential generators and prove that for any intermediate difference-differential field F, the transcendence degrees of the components of the induced filtration of F are expressed by a certain numerical polynomial \chi_{K, F,\eta}(t). This polynomial is closely connected with the dimension Hilbert-type polynomial of a submodule of the module of K\"ahler differentials $\Omega_{L^{\ast}|K} where L^{\ast} is the inversive closure of L. We prove some properties of polynomials \chi_{K, F,\eta}(t) and use them for the study of the Krull-type dimension of the extension L/K. In the last part of the paper, we present a generalization of the obtained results to multidimensional filtrations of L/K associated with partitions of the sets of basic derivations and translations. 
    more » « less
  3. We use the method of characteristic sets with respect to two term orderings to prove the existence and obtain a method of computation of a bivariate dimension polynomial associated with a non-reflexive difference-differential ideal in the algebra of difference-differential polynomials with several basic derivations and one translation. As a consequence, we obtain a new proof and a method of computation of the dimension polynomial of a non-reflexive prime difference ideal in the algebra of difference polynomials over an ordinary difference field. We also discuss applications of our results to systems of algebraic difference-differential equations. 
    more » « less
  4. We present a difference algebraic technique for the evaluation of the Einstein's strength of quasi-linear partial difference equations and some systems of such equations. Our approach is based on the properties of difference dimension polynomials that express the Einstein's strength and on the characteristic set method for computing such polynomials. The obtained results are applied to the comparative analysis of difference schemes for some chemical reaction-diffusion equations. 
    more » « less
  5. Multivariate dimension polynomials associated with finitely generated differential and difference field extensions arise as natural generalizations of the univariate differential and difference dimension polynomials. It turns out, however, that they carry more information about the corresponding extensions than their univariate counterparts. We extend the known results on multivariate dimension polynomials to the case of difference-differential field extensions with arbitrary partitions of sets of basic operators. We also describe some properties of multivariate dimension polynomials and their invariants. 
    more » « less
  6. We consider Hilbert-type functions associated with finitely generated inversive difference field extensions and systems of algebraic difference equations in the case when the translations are assigned positive integer weights. We prove that such functions are quasi-polynomials that can be represented as alternating sums of Ehrhart quasi-polynomials of rational conic polytopes. In particular, we generalize the author's results on difference dimension polynomials and their invariants to the case of inversive difference fields with weighted basic automorphisms. 
    more » « less