skip to main content

Search for: All records

Award ID contains: 1716130

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite the growing focus on understanding how to build resilience, the interaction between resilience and equity, particularly in the context of power asymmetries like those in communities reliant on resource-based industries, or resource-based communities, is not well understood. Here we present a stylized dynamical systems model of asymmetric resource access and control in resource-based communities that links industrial resource degradation, community well-being, and migration in response to economic and resource conditions. The model reveals a mechanism of collapse due to these dynamics in which over-extraction and resource degradation trigger irreversible population decline. Regulating resource extraction can increase resilience (in the sense of persistence) while also shifting the sustainable equilibrium and the implications for equity. Resilience does not guarantee equity at equilibrium, and this misalignment is more pronounced in the transient interactions between short term equity and long term resilience. The misalignment between resilience and equity demonstrates how equity considerations change the policy design process in important ways.

  2. Abstract

    California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited natural water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily bymore »market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand.

    « less
  3. Precipitation occurs in two basic forms defined as liquid state and solid state. Different from rain-fed watershed, modeling snow processes is of vital importance in snow-dominated watersheds. The seasonal snowpack is a natural water reservoir, which stores snow water in winter and releases it in spring and summer. The warmer climate in recent decades has led to earlier snowmelt, a decline in snowpack, and change in the seasonality of river flows. The Soil and Water Assessment Tool (SWAT) could be applied in the snow-influenced watershed because of its ability to simultaneously predict the streamflow generated from rainfall and from the melting of snow. The choice of parameters, reference data, and calibration strategy could significantly affect the SWAT model calibration outcome and further affect the prediction accuracy. In this study, SWAT models are implemented in four upland watersheds in the Tulare Lake Basin (TLB) located across the Southern Sierra Nevada Mountains. Three calibration scenarios considering different calibration parameters and reference datasets are applied to investigate the impact of the Parallel Energy Balance Model (ParBal) snow reconstruction data and snow parameters on the streamflow and snow water-equivalent (SWE) prediction accuracy. In addition, the watershed parameters and lapse rate parameters-led equifinality is alsomore »evaluated. The results indicate that calibration of the SWAT model with respect to both streamflow and SWE reference data could improve the model SWE prediction reliability in general. Comparatively, the streamflow predictions are not significantly affected by differently lumped calibration schemes. The default snow parameter values capture the extreme high flows better than the other two calibration scenarios, whereas there is no remarkable difference among the three calibration schemes for capturing the extreme low flows. The watershed and lapse rate parameters-induced equifinality affects the flow prediction more (Nash-Sutcliffe Efficiency (NSE) varies between 0.2–0.3) than the SWE prediction (NSE varies less than 0.1). This study points out the remote-sensing-based SWE reconstruction product as a promising alternative choice for model calibration in ungauged snow-influenced watersheds. The streamflow-reconstructed SWE bi-objective calibrated model could improve the prediction reliability of surface water supply change for the downstream agricultural region under the changing climate.« less