skip to main content


Search for: All records

Award ID contains: 1717362

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Across a wide variety of domains, artificial agents that can adapt and personalize to users have potential to improve and transform how social services are provided. Because of the need for personalized interaction data to drive this process, long-term (or longitudinal) interactions between users and agents, which unfold over a series of distinct interaction sessions, have attracted substantial research interest. In recognition of the expanded scope and structure of a long-term interaction, researchers are also adjusting the personalization models and algorithms used, orienting toward “continual learning” methods, which do not assume a stationary modeling target and explicitly account for the temporal context of training data. In parallel, researchers have also studied the effect of “multitask personalization,” an approach in which an agent interacts with users over multiple different tasks contexts throughout the course of a long-term interaction and learns personalized models of a user that are transferrable across these tasks. In this paper, we unite these two paradigms under the framework of “Lifelong Personalization,” analyzing the effect of multitask personalization applied to dynamic, non-stationary targets. We extend the multi-task personalization approach to the more complex and realistic scenario of modeling dynamic learners over time, focusing in particular on interactive scenarios in which the modeling agent plays an active role in teaching the student whose knowledge the agent is simultaneously attempting to model. Inspired by the way in which agents use active learning to select new training data based on domain context, we augment a Gaussian Process-based multitask personalization model with a mechanism to actively and continually manage its own training data, allowing a modeling agent to remove or reduce the weight of observed data from its training set, based on interactive context cues. We evaluate this method in a series of simulation experiments comparing different approaches to continual and multitask learning on simulated student data. We expect this method to substantially improve learning in Gaussian Process models in dynamic domains, establishing Gaussian Processes as another flexible modeling tool for Long-term Human-Robot Interaction (HRI) Studies. 
    more » « less
  2. To help facilitate play and learning, game-based educational activities often feature a computational agent as a co-player. Personalizing this agent's behavior to the student player is an active area of research, and prior work has demonstrated the benefits of personalized educational interaction across a variety of domains. A critical research challenge for personalized educational agents is real-time student modeling. Most student models are designed for and trained on only a single task, which limits the variety, flexibility, and efficiency of student player model learning. In this paper we present a research project applying transfer learning methods to student player models over different educational tasks, studying the effects of an algorithmic "multi-task personalization" approach on the accuracy and data efficiency of student model learning. We describe a unified robotic game system for studying multi-task personalization over two different educational games, each emphasizing early language and literacy skills such as rhyming and spelling. We present a flexible Gaussian Process-based approach for rapidly learning student models from interactive play in each game, and a method for transferring each game's learned student model to the other via a novel instance-weighting protocol based on task similarity. We present results from a simulation-based investigation of the impact of multi-task personalization, establishing the core viability and benefits of transferrable student models and outlining new questions for future in-person research. 
    more » « less
  3. Prior work in affect-aware educational robots has often relied on a common belief that the relationship between student affect and learning is independent of agent behaviors (child’s/robot’s) or unidirectional (positive/negative but not both) throughout the entire student-robot interaction.We argue that the student affect-learning relationship should be interpreted in two contexts: (1) social learning paradigm and (2) sub-events within child-robot interaction. In our paper, we examine two different social learning paradigms where children interact with a robot that acts either as a tutor or a tutee. Sub-events within child-robot interaction are defined as task-related events occurring in specific phases of an interaction (e.g., when the child/robot gets a wrong answer). We examine subevents at a macro level (entire interaction) and a micro level (within specific sub-events). In this paper, we provide an in-depth correlation analysis of children’s facial affect and vocabulary learning. We found that children’s affective displays became more predictive of their vocabulary learning when children interacted with a tutee robot who did not scaffold their learning. Additionally, children’s affect displayed during micro-level events was more predictive of their learning than during macro-level events. Last, we found that the affect-learning relationship is not unidirectional, but rather is modulated by context, i.e., several affective states facilitated student learning when displayed in some sub-events but inhibited learning when displayed in others. These findings indicate that both social learning paradigm and sub-events within interaction modulate student affect-learning relationship. 
    more » « less
  4. In recent years, researchers have developed technology to analyze human facial expressions and other affective data at very high time resolution. This technology is enabling researchers to develop and study interactive robots that are increasingly sensitive to their human interaction partners’ affective states. However, typical interaction planning models and algorithms operate on timescales that are frequently orders of magnitude larger than the timescales at which real-time affect data is sensed. To bridge this gap between the scales of sensor data collection and interaction modeling, affective data must be aggregated and interpreted over longer timescales. In this paper we clarify and formalize the computational task of affect interpretation in the context of an interactive educational game played by a human and a robot, during which facial expression data is sensed, interpreted, and used to predict the interaction partner’s gameplay behavior. We compare different techniques for affect interpretation, used to generate sets of affective labels for an interactive modeling and inference task, and evaluate how the labels generated by each interpretation technique impact model training and inference. We show that incorporating a simple method of personalization into the affect interpretation process — dynamically calculating and applying a personalized threshold for determining affect feature labels over time — leads to a significant improvement in the quality of inference, comparable to performance gains from other data pre-processing steps such as smoothing data via median filter. We discuss the implications of these findings for future development of affect-aware interactive robots and propose guidelines for the use of affect interpretation methods in interactive scenarios. 
    more » « less