skip to main content


Search for: All records

Award ID contains: 1725520

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The National Research Council’s Framework for K-12 Science Education and the subsequent Next Generation Science Standards have provided a widespread common language for science education reform over the last decade. These efforts have naturally been targeted at the K-12 levels, but we have argued that the three dimensions outlined in these documents—scientific practices, disciplinary core ideas, and crosscutting concepts (together termed three-dimensional learning)—are also a productive route for reform in college-level science courses. However, how and why college-level faculty might be motivated to incorporate three-dimensional learning into their courses is not well understood. Here, we report a mixed-methods study of participants in an interdisciplinary professional development program designed to support faculty in developing assessments and instruction aligned with three-dimensional learning. One cohort of faculty (N = 8) was interviewed, and four cohorts of faculty (N = 33) were surveyed. Using expectancy-value theory as an organizational framework, we identified themes of perceived values and costs that participants discussed in implementing three-dimensional learning. Based on a cluster analysis of all survey participants’ motivational profiles, we propose that these themes apply to the broader population of participants in this program. We recommend specific interventions to improve faculty motivation for implementing three-dimensional learning: emphasizing the utility value of three-dimensional learning in effecting positive learning gains for students; drawing connections between the dimensions of three-dimensional learning and faculty’s disciplinary identities; highlighting scientific practices as a key leverage point for faculty ability beliefs; minimizing cognitive dissonance for faculty in understanding the similarities and differences between the three dimensions; focusing on assessment writing as a keystone professional development activity; and aligning local evaluation practices and promotion policies with the 3DL framework.

     
    more » « less
  2. Abstract

    Many conversations surrounding improvement of large‐enrollment college science, technology, engineering & mathematics (STEM) courses focus primarily (or solely) on changing instructional practices. By reducing dynamic, complex learning environments to collections of teaching methods, we neglect other meaningful parts of a course ecosystem (e.g., curriculum, assessments). Here, we advocate extending STEM education reform conversations beyond “active versus passive learning.” We argue communities of researchers and instructors would be better served if what we teach and assess was discussed alongside how we teach. To enable nuanced conversations about the characteristics of learning environments that support students in explaining phenomena, we defined a model of college STEM learning environments which attends to the intellectual work emphasized and rewarded on exams (i.e., assessment emphasis), what is taught in whole‐class meetings (i.e., instructional emphasis), and how those meetings are enacted (i.e., instructional practices). We subsequently characterized three distinct chemistry courses and qualitatively examined the characteristics of chemistry learning environments that effectively supported students in explaining why a beaker of water warms as a white solid dissolves. Furthermore, we quantitatively investigated the extent to which measures of incoming preparation explained variance in students’ explanations relative to enrollment in each learning environment. Our findings demonstrate that learning environments that effectively supported learners in explaining dissolution emphasized how and why salts dissolve in‐class and on assessments. Changing teaching methods in an otherwise traditionally structured course (i.e., a course organized by topics that primarily assesses math and recall) did not appear to impact the sophistication of students’ explanations. Additionally, we observed that learning environment enrollment explained substantially more of the variance observed in students’ explanations than measures of precollege math preparation. This finding suggests that emphasizing and rewarding the construction of causal accounts for phenomena in‐class and on assessments may support more equitable achievement.

     
    more » « less
  3. Free, publicly-accessible full text available October 5, 2024
  4. Free, publicly-accessible full text available September 12, 2024
  5. Free, publicly-accessible full text available May 9, 2024
  6. Within chemistry education, there are various curricular and pedagogical approaches that aim to improve teaching and learning in chemistry. Efforts to characterize these transformations have primarily focused on student reasoning and performance, and little work has been done to explore student perceptions of curricular and pedagogical transformations and whether these perceptions align with the transformational intent. To complement our previous work on the Organic Chemistry, Life, the Universe, and Everything (OCLUE) curriculum, we developed this exploratory study to determine if students had perceived the goals of the transformation. As in our previous research on OCLUE, we compared perceptions between OCLUE and a more traditional organic chemistry course. Using inductive and deductive qualitative methodologies, we analyzed student responses to three open-eneded questions focused on how students perceived they were expected to think, what they found most difficult, and how they perceived they were assessed. The findings were classified into three superodinate themes: one where students perceived they were expected to learn things as rote knowledge, such as memorization (“Rote Knowledge”), another where students perceived they were expected to use their knowledge (“Use of Knowledge”), and responses that used vague, generalized language, were uninformative, or did not address the questions asked (“Other”). Students in these two courses responded very differently to the open-ended questions with students in OCLUE being more likely to perceive they were expected to use their knowledge, while students in the traditional course reported rote learning or memorization more frequently. As the findings evolved, our interpretations and discussions were influenced by sociocultural perspectives and other cultural frameworks. We believe this approach can provide meaningful insights into transformational intent and certain features of classroom cultures. 
    more » « less
  7. This study is a follow up to two earlier studies characterizing student real-time use of mechanistic arrows. In these previous studies, students were asked to predict a product by drawing a curved arrow mechanism using an interface that allowed recording and replay of student actions. In the present study two different student cohorts responded to the same tasks as the original studies: a cohort who were enrolled in a traditional organic course, and a cohort who were part of a transformed organic course (Organic Chemistry, Life, the Universe and Everything, OCLUE). Both cohorts improved in their ability to predict an appropriate product over the two semesters, and we found little meaningful difference in the ability of students from either cohort to predict the outcome of a familiar reaction. However, students in the OCLUE cohort were more likely to draw mechanistic arrows than the students from the traditional course. In contrast, when the task involved predicting the product of an unfamiliar reaction, OCLUE students were over three times more likely to draw mechanistically reasonable steps and produce a plausible product than students from the traditional cohort. We propose that the differences between the two cohorts emerge from the following: (1) explicit attempts in the OCLUE course to link drawing reactions mechanisms using the electron pushing formalism to the scientific practice of constructing explanations. It is our contention that this approach changes the arrow pushing mechanism from a skill to the construction of a model which students can use to predict and explain outcomes; and (2) the numerous opportunities in the OCLUE course to try out ideas without penalty, leading to a willingness to try to determine outcomes in unfamiliar situations. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)
    The ability to predict macroscopic properties using a compound's chemical structure is an essential idea for chemistry as well as other disciplines such as biology. In this study we investigate how different levels of interventions impact the components of students’ explanations (claims, evidence, and reasoning) of structure–property relationships, particularly related to boiling point trends. These interventions, aligned with Three-Dimensional Learning (3DL), were investigated with four different cohorts of students: Cohort 1 – a control group of students enrolled in an active learning general chemistry course; Cohort 2 – students enrolled in the same active learning general chemistry course but given Intervention 1 (a 3DL worksheet administered during class time); Cohort 3 – students enrolled in the same active learning general chemistry course but given Intervention 1 and Intervention 2 (a 3DL course exam question administered after instruction); and Cohort 4 – a reference group of students enrolled in a transformed active learning general chemistry curriculum in which 3DL is an essential feature and includes Intervention 1 and Intervention 2 as part of the curriculum. We found that Cohort 2 students (with the 3DL worksheet intervention) were more likely than the control group (Cohort 1) to correctly predict the compound with a higher boiling point as well as incorporate ideas of strength of intermolecular forces into their explanations of boiling point differences. When a 3DL exam question was given as a follow up to the 3DL worksheet, students in Cohort 3 were more likely than Cohorts 1 and 2 to correctly identify the claim. Further comparison showed that Cohort 4 (transformed general chemistry curriculum) were more likely than Cohorts 1–3 to also include the ideas of energy needed to overcome stronger forces for a more sophisticated explanation (50% of Cohort 4 students compared to 17–33% for Cohorts 1–3). In addition, 80% of Cohort 4 students were able to construct a correct representation of hydrogen bonding as a non-covalent interaction compared to 13–57% for the other three cohorts. 
    more » « less