skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Systematic benchmarking of HTTPS third party copy on 100Gbps links using XRootD
The High Luminosity Large Hadron Collider provides a data challenge. The amount of data recorded from the experiments and transported to hundreds of sites will see a thirty fold increase in annual data volume. A systematic approach to contrast the performance of different Third Party Copy (TPC) transfer protocols arises. Two contenders, XRootD-HTTPS and the GridFTP are evaluated in their performance for transferring files from one server to another over 100Gbps interfaces. The benchmarking is done by scheduling pods on the Pacific Research Platform Kubernetes cluster to ensure reproducible and repeatable results. This opens a future pathway for network testing of any TPC transfer protocol.  more » « less
Award ID(s):
2030508 1836650 1148698 1541349 1730158
PAR ID:
10296563
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
251
ISSN:
2100-014X
Page Range / eLocation ID:
02001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nambiar, R; Poess, M. (Ed.)
    Database systems with hybrid data management support, referred to as HTAP or HOAP architectures, are gaining popularity. These first appeared in the relational world, and the CH-benCHmark (CH) was proposed in 2011 to evaluate such relational systems. Today, one finds NoSQL database systems gaining adoption for new applications. In this paper we present CH2, a new benchmark – created with CH as its starting point – aimed at evaluating hybrid data platforms in the document data management world. Like CH, CH2 borrows from and extends both TPC-C and TPC-H. Differences from CH include a document-oriented schema, a data generation scheme that creates a TPC-H-like history, and a “do over” of the CH queries that is more in line with TPC-H. This paper details shortcomings that we uncovered in CH, the design of CH2, and preliminary results from running CH2 against Couchbase Server 7.0 (whose Query and Analytics services provide HOAP support for NoSQL data). The results provide insight into the performance isolation and horizontal scalability properties of Couchbase Server 7.0 as well as demonstrating the efficacy of CH2 for evaluating such platforms. 
    more » « less
  2. Abstract AimUnderstanding and predicting the biological consequences of climate change requires considering the thermal sensitivity of organisms relative to environmental temperatures. One common approach involves ‘thermal safety margins’ (TSMs), which are generally estimated as the temperature differential between the highest temperature an organism can tolerate (critical thermal maximum, CTmax) and the mean or maximum environmental temperature it experiences. Yet, organisms face thermal stress and performance loss at body temperatures below their CTmax,and the steepness of that loss increases with the asymmetry of the thermal performance curve (TPC). LocationGlobal. Time period2015–2019. Major taxa studiedAnts, fish, insects, lizards and phytoplankton. MethodsWe examine variability in TPC asymmetry and the implications for thermal stress for 384 populations from 289 species across taxa and for metrics including ant and lizard locomotion, fish growth, and insect and phytoplankton fitness. ResultsWe find that the thermal optimum (Topt, beyond which performance declines) is more labile than CTmax, inducing interspecific variation in asymmetry. Importantly, the degree of TPC asymmetry increases with Topt. Thus, even though populations with higher Topts in a hot environment might experience above‐optimal body temperatures less often than do populations with lower Topts, they nonetheless experience steeper declines in performance at high body temperatures. Estimates of the annual cumulative decline in performance for temperatures above Toptsuggest that TPC asymmetry alters the onset, rate and severity of performance decrement at high body temperatures. Main conclusionsSpecies with the same TSMs can experience different thermal risk due to differences in TPC asymmetry. Metrics that incorporate additional aspects of TPC shape better capture the thermal risk of climate change than do TSMs. 
    more » « less
  3. Abstract The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors. 
    more » « less
  4. Abstract Recent work has demonstrated that changes in resource availability can alter a consumer's thermal performance curve (TPC). When resources decline, the optimal temperature and breadth of thermal performance also decline, leading to a greater risk of warming than predicted by static TPCs. We investigate the effect of temperature on coupled consumer‐resource dynamics, focusing on the potential for changes in the consumer TPC to alter extinction risk. Coupling consumer and resource dynamics generally reduces the potential for resource decline to exacerbate the effects of warming via changes to the TPC due to a reduction in top‐down control when consumers near the limits of their thermal performance curve. However, if resources are more sensitive to warming, consumer TPCs can be reshaped by declining resources, leading to increased extinction risk. Our work elucidates the role of top‐down and bottom‐up regulation in determining the extent to which changes in resource density alter consumer TPCs. 
    more » « less
  5. Abstract The ICARUS liquid argon time projection chamber (LArTPC) neutrino detector has been taking physics data since 2022 as part of the Short-Baseline Neutrino (SBN) Program. This paper details the equalization of the response to charge in the ICARUS time projection chamber (TPC), as well as data-driven tuning of the simulation of ionization charge signals and electronics noise. The equalization procedure removes non-uniformities in the ICARUS TPC response to charge in space and time. This work leverages the copious number of cosmic ray muons available to ICARUS at the surface. The ionization signal shape simulation applies a novel procedure that tunes the simulation to match what is measured in data. The end result of the equalization procedure and simulation tuning allows for a comparison of charge measurements in ICARUS between Monte Carlo simulation and data, showing good performance with minimal residual bias between the two. 
    more » « less