Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recognizing the need for proactive analysis of cyber adversary behavior, this paper presents a new event-driven simulation model and implementation to reveal the efforts needed by attackers who have various entry points into a network. Unlike previous models which focus on the impact of attackers’ actions on the defender’s infrastructure, this work focuses on the attackers’ strategies and actions. By operating on a request-response session level, our model provides an abstraction of how the network infrastructure reacts to access credentials the adversary might have obtained through a variety of strategies. We present the current capabilities of the simulator by showing three variants of Bronze Butler APT on a network with different user access levels.more » « less
-
Advanced Persistent Threats (APTs) are professional, sophisticated threats that pose a serious concern to our technologically-dependent society. As these threats become more common, conventional response-driven cyberattack management needs to be substituted with anticipatory defense measures. Understanding adversarial behavior and movement is critical to improve our ability to proactively defend. This paper focuses on understanding adversarial movement and adaptation using a case study from a real-time cybersecurity exercise. Through multidisciplinary methodologies from social and hard sciences, this paper presents a mechanism to dissect cyberadversarial intrusion chains to unpack movement, and adaptations.more » « less
-
Cyber situational awareness is an essential part of cyber defense that allows the cybersecurity operators to cope with the complexity of today’s networks and threat landscape. Perceiving and comprehending the situation allow the operator to project upcoming events and make strategic decisions. In this paper, we recapitulate the fundamentals of cyber situational awareness and highlight its unique characteristics in comparison to generic situational awareness known from other fields. Subsequently, we provide an overview of existing research and trends in publishing on the topic, introduce front research groups, and highlight the impact of cyber situational awareness research. Further, we propose an updated taxonomy and enumeration of the components used for achieving cyber situational awareness. The updated taxonomy conforms to the widely-accepted three-level definition of cyber situational awareness and newly includes the projection level. Finally, we identify and discuss contemporary research and operational challenges, such as the need to cope with rising volume, velocity, and variety of cybersecurity data and the need to provide cybersecurity operators with the right data at the right time and increase their value through visualization.more » « less
-
On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by Generative Adversarial NetworksMany cyber attack actions can be observed but the observables often exhibit intricate feature dependencies, non-homogeneity, and potential for rare yet critical samples. This work tests the ability to model and synthesize cyber intrusion alerts through Generative Adversarial Networks (GANs), which explore the feature space through reconciling between randomly generated samples and the given data that reflects a mixture of diverse attack behaviors. Through a comprehensive analysis using Jensen-Shannon Divergence (JSD), conditional and joint entropy, and mode drops and additions, we show that the Wasserstein-GAN with Gradient Penalty and Mutual Information (WGAN-GPMI) is more effective in learning to generate realistic alerts than models without Mutual Information constraints. The added Mutual Information constraint pushes the model to explore the feature space more thoroughly and increases the generation of low probability yet critical alert features. By mapping alerts to a set of attack stages it is shown that the output of these low probability alerts has a direct contextual meaning for cyber security analysts. Overall, our results show the promising novel use of GANs to learn from limited yet diverse intrusion alerts to generate synthetic ones that emulate critical dependencies, opening the door to data driven network threat models.more » « less
-
Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as its ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples.more » « less
An official website of the United States government

Full Text Available