skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: On the Variety and Veracity of Cyber Intrusion Alerts Synthesized by Generative Adversarial Networks
Many cyber attack actions can be observed but the observables often exhibit intricate feature dependencies, non-homogeneity, and potential for rare yet critical samples. This work tests the ability to model and synthesize cyber intrusion alerts through Generative Adversarial Networks (GANs), which explore the feature space through reconciling between randomly generated samples and the given data that reflects a mixture of diverse attack behaviors. Through a comprehensive analysis using Jensen-Shannon Divergence (JSD), conditional and joint entropy, and mode drops and additions, we show that the Wasserstein-GAN with Gradient Penalty and Mutual Information (WGAN-GPMI) is more effective in learning to generate realistic alerts than models without Mutual Information constraints. The added Mutual Information constraint pushes the model to explore the feature space more thoroughly and increases the generation of low probability yet critical alert features. By mapping alerts to a set of attack stages it is shown that the output of these low probability alerts has a direct contextual meaning for cyber security analysts. Overall, our results show the promising novel use of GANs to learn from limited yet diverse intrusion alerts to generate synthetic ones that emulate critical dependencies, opening the door to data driven network threat models.  more » « less
Award ID(s):
1742789 1526383
PAR ID:
10190255
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Management Information Systems
ISSN:
2158-656X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as its ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples. 
    more » « less
  2. Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigate those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software. 
    more » « less
  3. Modern smart vehicles have a Controller Area Network (CAN) that supports intra-vehicle communication between intelligent Electronic Control Units (ECUs). The CAN is known to be vulnerable to various cyber attacks. In this paper, we propose a unified framework that can detect multiple types of cyber attacks (viz., Denial of Service, Fuzzy, Impersonation) affecting the CAN. Specifically, we construct a feature by observing the timing information of CAN packets exchanged over the CAN bus network over partitioned time windows to construct a low dimensional representation of the entire CAN network as a time series latent space. Then, we apply a two tier anomaly based intrusion detection model that keeps track of short term and long term memory of deviations in the initial time series latent space, to create a 'stateful latent space'. Then, we learn the boundaries of the benign stateful latent space that specify the attack detection criterion. To find hyper-parameters of our proposed model, we formulate a preference based multi-objective optimization problem that optimizes security objectives tailored for a network-wide time series anomaly based intrusion detector by balancing trade-offs between false alarm count, time to detection, and missed detection rate. We use real benign and attack datasets collected from a Kia Soul vehicle to validate our framework and show how our performance outperforms existing works. 
    more » « less
  4. null (Ed.)
    Cyber-threats are continually evolving and growing in numbers and extreme complexities with the increasing connectivity of the Internet of Things (IoT). Existing cyber-defense tools seem not to deter the number of successful cyber-attacks reported worldwide. If defense tools are not seldom, why does the cyber-chase trend favor bad actors? Although cyber-defense tools monitor and try to diffuse intrusion attempts, research shows the required agility speed against evolving threats is way too slow. One of the reasons is that many intrusion detection tools focus on anomaly alerts’ accuracy, assuming that pre-observed attacks and subsequent security patches are adequate. Well, that is not the case. In fact, there is a need for techniques that go beyond intrusion accuracy against specific vulnerabilities to the prediction of cyber-defense performance for improved proactivity. This paper proposes a combination of cyber-attack projection and cyber-defense agility estimation to dynamically but reliably augur intrusion detection performance. Since cyber-security is buffeted with many unknown parameters and rapidly changing trends, we apply a machine learning (ML) based hidden markov model (HMM) to predict intrusion detection agility. HMM is best known for robust prediction of temporal relationships mid noise and training brevity corroborating our high prediction accuracy on three major open-source network intrusion detection systems, namely Zeek, OSSEC, and Suricata. Specifically, we present a novel approach for combined projection, prediction, and cyber-visualization to enable precise agility analysis of cyber defense. We also evaluate the performance of the developed approach using numerical results. 
    more » « less
  5. Generative models have recently gained popularity in remote sensing, offering substantial benefits for interpreting and utilizing satellite imagery across diverse applications such as climate monitoring, urban planning, and wildfire detection. These models are particularly adept at addressing the challenges posed by satellite images, which often exhibit domain variability due to seasonal changes, sensor characteristics, and, especially, variations in spectral bands. Such variability can significantly impact model performance across various tasks. In response to these challenges, our work introduces an adaptive approach that harnesses the capabilities of generative adversarial networks (GANs), augmented with contrastive learning, to generate target domain images that account for multispectral band variations effectively. By maximizing mutual information between corresponding patches and leveraging the power of GANs, our model aims to generate realistic-looking images across different multispectral domains. We present a comparative analysis of our model against other well-established generative models, demonstrating its efficacy in generating high-quality satellite images while effectively managing domain variations inherent to multispectral diversity. 
    more » « less