skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthetic Intrusion Alert Generation through Generative Adversarial Networks
Cyber Intrusion alerts are commonly collected by corporations to analyze network traffic and glean information about attacks perpetrated against the network. However, datasets of true malignant alerts are rare and generally only show one potential attack scenario out of many possible ones. Furthermore, it is difficult to expand the analysis of these alerts through artificial means due to the complexity of feature dependencies within an alert and lack of rare yet critical samples. This work proposes the use of a Mutual Information constrained Generative Adversarial Network as a means to synthesize new alerts from historical data. Histogram Intersection and Conditional Entropy are used to show the performance of this model as well as its ability to learn intricate feature dependencies. The proposed models are able to capture a much wider domain of alert feature values than standard Generative Adversarial Networks. Finally, we show that when looking at alerts from the perspective of attack stages, the proposed models are able to capture critical attacker behavior providing direct semantic meaning to generated samples.  more » « less
Award ID(s):
1742789 1526383
PAR ID:
10190301
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of IEEE MILCOM
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many cyber attack actions can be observed but the observables often exhibit intricate feature dependencies, non-homogeneity, and potential for rare yet critical samples. This work tests the ability to model and synthesize cyber intrusion alerts through Generative Adversarial Networks (GANs), which explore the feature space through reconciling between randomly generated samples and the given data that reflects a mixture of diverse attack behaviors. Through a comprehensive analysis using Jensen-Shannon Divergence (JSD), conditional and joint entropy, and mode drops and additions, we show that the Wasserstein-GAN with Gradient Penalty and Mutual Information (WGAN-GPMI) is more effective in learning to generate realistic alerts than models without Mutual Information constraints. The added Mutual Information constraint pushes the model to explore the feature space more thoroughly and increases the generation of low probability yet critical alert features. By mapping alerts to a set of attack stages it is shown that the output of these low probability alerts has a direct contextual meaning for cyber security analysts. Overall, our results show the promising novel use of GANs to learn from limited yet diverse intrusion alerts to generate synthetic ones that emulate critical dependencies, opening the door to data driven network threat models. 
    more » « less
  2. Detection of malicious behavior is a fundamental problem in security. One of the major challenges in using detection systems in practice is in dealing with an overwhelming number of alerts that are triggered by normal behavior (the so-called false positives), obscuring alerts resulting from actual malicious activity. While numerous methods for reducing the scope of this issue have been proposed, ultimately one must still decide how to prioritize which alerts to investigate, and most existing prioritization methods are heuristic, for example, based on suspiciousness or priority scores. We introduce a novel approach for computing a policy for prioritizing alerts using adversarial reinforcement learning. Our approach assumes that the attackers know the full state of the detection system and dynamically choose an optimal attack as a function of this state, as well as of the alert prioritization policy. The first step of our approach is to capture the interaction between the defender and attacker in a game theoretic model. To tackle the computational complexity of solving this game to obtain a dynamic stochastic alert prioritization policy, we propose an adversarial reinforcement learning framework. In this framework, we use neural reinforcement learning to compute best response policies for both the defender and the adversary to an arbitrary stochastic policy of the other. We then use these in a double-oracle framework to obtain an approximate equilibrium of the game, which in turn yields a robust stochastic policy for the defender. Extensive experiments using case studies in fraud and intrusion detection demonstrate that our approach is effective in creating robust alert prioritization policies. 
    more » « less
  3. Subgrid parameterizations of mesoscale eddies continue to be in demand for climate simulations. These subgrid parameterizations can be powerfully designed using physics and/or data‐driven methods, with uncertainty quantification. For example, Guillaumin and Zanna (2021) proposed a Machine Learning (ML) model that predicts subgrid forcing and its local uncertainty. The major assumption and potential drawback of this model is the statistical independence of stochastic residuals between grid points. Here, we aim to improve the simulation of stochastic forcing with generative models of ML, such as Generative adversarial network (GAN) and Variational autoencoder (VAE). Generative models learn the distribution of subgrid forcing conditioned on the resolved flow directly from data and they can produce new samples from this distribution. Generative models can potentially capture not only the spatial correlation but any statistically significant property of subgrid forcing. We test the proposed stochastic parameterizations offline and online in an idealized ocean model. We show that generative models are able to predict subgrid forcing and its uncertainty with spatially correlated stochastic forcing. Online simulations for a range of resolutions demonstrated that generative models are superior to the baseline ML model at the coarsest resolution. 
    more » « less
  4. Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigate those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software. 
    more » « less
  5. With rapid evolution of mobile core network (MCN) architectures, large-scale control-plane traffic (CPT) traces are critical to studying MCN design and performance optimization by the R&D community. The prior-art control-plane traffic generator SMM heavily relies on domain knowledge which requires re-design as the domain evolves. In this work, we study the feasibility of developing a high-fidelity MCN control plane traffic generator by leveraging generative ML models. We identify key challenges in synthesizing high-fidelity CPT including generic (to data-plane) requirements such as multimodality feature relationships and unique requirements such as stateful semantics and long-term (time-of-day) data variations. We show state-of-the-art, generative adversarial network (GAN)-based approaches shown to work well for data-plane traffic cannot meet these fidelity requirements of CPT, and develop a transformer-based model, CPT-GPT, that accurately captures complex dependencies among the samples in each traffic stream (control events by the same UE) without the need for GAN. Our evaluation of CPT-GPT on a large-scale control-plane traffic trace shows that (1) it does not rely on domain knowledge yet synthesizes control-plane traffic with comparable fidelity as SMM; (2) compared to the prior-art GAN-based approach, it reduces the fraction of streams that violate stateful semantics by two orders of magnitude, the max y-distance of sojourn time distributions of streams by 16.0%, and the transfer learning time in deriving new hourly models by 3.36×. 
    more » « less