skip to main content

Search for: All records

Award ID contains: 1755769

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 3, 2022
  2. Free, publicly-accessible full text available October 1, 2022
  3. Free, publicly-accessible full text available August 19, 2022
  4. We study the low rank regression problem $\my = M\mx + \epsilon$, where $\mx$ and $\my$ are d1 and d2 dimensional vectors respectively. We consider the extreme high-dimensional setting where the number of observations n is less than d1+d2. Existing algorithms are designed for settings where n is typically as large as $\Rank(M)(d_1+d_2)$. This work provides an efficient algorithm which only involves two SVD, and establishes statistical guarantees on its performance. The algorithm decouples the problem by first estimating the precision matrix of the features, and then solving the matrix denoising problem. To complement the upper bound, we introduce newmore »techniques for establishing lower bounds on the performance of any algorithm for this problem. Our preliminary experiments confirm that our algorithm often out-performs existing baselines, and is always at least competitive.« less
  5. This paper studies a stylized, yet natural, learning-to-rank problem and points out the critical incorrectness of a widely used nearest neighbor algorithm. We consider a model with n agents (users) {xi}i∈[n] and m alternatives (items) {yl}l∈[m], each of which is associated with a latent feature vector. Agents rank items nondeterministically according to the Plackett-Luce model, where the higher the utility of an item to the agent, the more likely this item will be ranked high by the agent. Our goal is to identify near neighbors of an arbitrary agent in the latent space for prediction. We first show that themore »Kendall-tau distance based kNN produces incorrect results in our model. Next, we propose a new anchor-based algorithm to find neighbors of an agent. A salient feature of our algorithm is that it leverages the rankings of many other agents (the so-called “anchors”) to determine the closeness/similarities of two agents. We provide a rigorous analysis for one-dimensional latent space, and complement the theoretical results with experiments on synthetic and real datasets. The experiments confirm that the new algorithm is robust and practical.« less