Abstract The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.
more »
« less
Low Exciton Binding Energies and Localized Exciton–Polaron States in 2D Tin Halide Perovskites
Abstract Aside from band gap reduction, little is understood about the effect of the tin‐for‐lead substitution on the fundamental optical and optoelectronic properties of metal halide perovskites (MHPs), especially when transitioning from 3D to lower dimensional structures. Herein, we take advantage of the spectroscopic isolation of excitons in 2D MHPs to study the intrinsic differences between lead and tin MHPs. The exciton's spectral fine structure indicates a larger polaron binding energy in tin MHPs. Additionally, the electroabsorption responses of the 2D MHPs demonstrates that tin MHPs have exciton binding energies 1.5–2× lower than that of their lead counterparts. Despite the lower binding energy, the excitons in tin MHPs are more Frenkel‐like with small radii, small polarizabilities, and large dipole moments. These results are interpreted as consequences of small polaron formation and disorder‐induced dipole moments. This work highlights the wide range of intrinsic differences between lead and tin MHPs as well as the complexity of excited states in these systems.
more »
« less
- Award ID(s):
- 1757998
- PAR ID:
- 10446456
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 9
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Two-dimensional organic–inorganic hybrid perovskite (2D-OIHP) quantum wells exhibit a triplet of bright exciton fine structure states near the band edge, enabling the generation of transient macroscopic spin alignments with circularly polarized light. Here, we investigate the microscopic origin of photoinduced spin relaxation in 2D-OIHPs using multidimensional coherent spectroscopy together with a theoretical framework that combines time-dependent perturbation theory with the Fokker–Planck equation. Analysis of the spectral line shapes reveals highly correlated exciton fluctuations within the fine structure manifolds of a pair of 2D-OIHPs featuring different organic layer thicknesses and polaron binding energies. In particular, the Gaussian correlation coefficients determined for the two lead-iodide-based systems range from 0.67 to 0.80, while their polaron binding energies span 11.8–18.9 meV. Incorporating time-coincident solvation dynamics into a stochastic model shows that these energy level correlations reduce the exciton–bath couplings and extend dephasing times for spin-flip transitions, even in spectral broadening regimes governed by Marcus-like kinetics (which are typically considered incompatible with motional narrowing). Since photoexcitation occurs on the seam of intersection between the excited-state free energy surfaces, spin relaxation can proceed without an activation barrier, provided it outpaces energy dissipation into the environment. Overall, these results demonstrate that correlated exciton fluctuations play a central role in accelerating spin depolarization in 2D-OIHPs through motional narrowing of coherences between exciton states.more » « less
-
Abstract Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices.more » « less
-
Abstract Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2and WSe2gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s–3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2and WSe2.more » « less
-
Spin–orbit coupling splits the exciton resonances of two-dimensional organic–inorganic hybrid perovskites (2D-OIHPs) into an optically active fine structure. Although circularly polarized light can induce macroscopic spin polarizations in ensembles of quantum wells, the orientations of the angular momentum vectors associated with individual excitons generally randomize on sub-picosecond timescales in 2D-OIHPs with single lead-iodide layers. In the present work, we investigate the nonlinear optical signatures of spin depolarization in 2D-OIHP materials with various organic layer thicknesses and polaron binding energies. Transient absorption experiments conducted using circularly polarized laser pulses establish time constants for spin equilibration ranging from 65 to 110 fs in the targeted systems. In addition, with inspiration from time-resolved Faraday rotation spectroscopies, we introduce a transient grating method in which spin relaxation promotes an elliptical-to-linear transformation of the signal field polarization. Spectroscopic signatures for all experiments are simulated with a common third-order perturbative model that incorporates orientationally averaged transition dipoles and the polarizations of the laser pulses. Spectroscopic line broadening parameters obtained for the 2D-OIHP systems are considered in the context of a rate formula for spin relaxation, wherein the spin–orbit coupling is combined with a cumulant expansion for fluctuations of the energy levels. Our analysis suggests that the insensitivity of the measured spin relaxation rates to the polaron binding energies of 2D-OIHPs reflects the suppression of an activation energy barrier due to motional narrowing. Model calculations conducted with empirical parameters indicate that motional narrowing of the spin relaxation processes originates in correlated thermal fluctuations of the energy levels comprising the exciton fine structure.more » « less
An official website of the United States government
