skip to main content


Search for: All records

Award ID contains: 1762458

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a method for measuring small, discrete features near the resolution limit of X‐ray computed tomography (CT) data volumes with the aim of providing consistent answers across instruments and data resolutions. The appearances of small features are impacted by the partial volume effect and blurring due to the data point‐spread function, and we call our approach the partial‐volume and blurring (PVB) method. Features are segmented to encompass their total attenuation signal, which is then converted to a volume, in turn allowing a subset of voxels to be used to measure shape and orientation. We demonstrate the method on a set of gold grains, scanned with two instruments at a range of resolutions and with various surrounding media. We recover volume accurately over a factor of 27 range in grain volume and factor of 5 range in data resolution, successfully characterizing particles as small as 5.4 voxels in true volume. Shape metrics are affected variably by resolution effects and are more reliable when based on image‐based caliper measurements than perimeter length or surface area. Orientations are reproducible when maximum or minimum axis lengths are sufficiently different from the intermediate axis. Calibration requires end‐member CT numbers for the materials of interest, which we obtained empirically; we describe a first‐principles calculation and discuss its challenges. The PVB method is accurate, reproducible, resolution invariant, and objective, all important improvements over any method based on global thresholds.

     
    more » « less
  2. Calibrating human population dispersals across Earth’s surface is fundamental to assessing rates and timing of anthropogenic impacts and distinguishing ecological phenomena influenced by humans from those that were not. Here, we describe the Hartley mammoth locality, which dates to 38,900–36,250 cal BP by AMS 14 C analysis of hydroxyproline from bone collagen. We accept the standard view that elaborate stone technology of the Eurasian Upper Paleolithic was introduced into the Americas by arrival of the Native American clade ∼16,000 cal BP. It follows that if older cultural sites exist in the Americas, they might only be diagnosed using nuanced taphonomic approaches. We employed computed tomography (CT and μCT) and other state-of-the-art methods that had not previously been applied to investigating ancient American sites. This revealed multiple lines of taphonomic evidence suggesting that two mammoths were butchered using expedient lithic and bone technology, along with evidence diagnostic of controlled (domestic) fire. That this may be an ancient cultural site is corroborated by independent genetic evidence of two founding populations for humans in the Americas, which has already raised the possibility of a dispersal into the Americas by people of East Asian ancestry that preceded the Native American clade by millennia. The Hartley mammoth locality thus provides a new deep point of chronologic reference for occupation of the Americas and the attainment by humans of a near-global distribution. 
    more » « less
  3. null (Ed.)
    Odor stimuli consist of thousands of possible molecules, each molecule with many different properties, each property a dimension of the stimulus. Processing these high dimensional stimuli would appear to require many stages in the brain to reach odor perception, yet, in mammals, after the sensory receptors this is accomplished through only two regions, the olfactory bulb and olfactory cortex. We take a first step toward a fundamental understanding by identifying the sequence of local operations carried out by microcircuits in the pathway. Parallel research provided strong evidence that processed odor information is spatial representations of odor molecules that constitute odor images in the olfactory bulb and odor objects in olfactory cortex. Paleontology provides a unique advantage with evolutionary insights providing evidence that the basic architecture of the olfactory pathway almost from the start ∼330 million years ago (mya) has included an overwhelming input from olfactory sensory neurons combined with a large olfactory bulb and olfactory cortex to process that input, driven by olfactory receptor gene duplications. We identify a sequence of over 20 microcircuits that are involved, and expand on results of research on several microcircuits that give the best insights thus far into the nature of the high dimensional processing. 
    more » « less
  4. Features such as particles, pores, or cracks are challenging to measure accurately in CT data when they are small relative to the data resolution, characterized as a point-spread function (PSF). These challenges are particularly acute when paired with segmentation, as the PSF distributes some of the signal from a voxel among neighboring ones; effectively dispersing some of the signal from a given object to a region outside of it. Any feature of interest with one or more dimensions on the order of the PSF will be impacted by this effect, and measurements based on global thresholds necessarily fail. Measurements of the same features should be consistent across different instruments and data resolutions. The PVB (partial volume and blurring) method successfully compensates by quantifying features that are small in all three dimensions based on their attenuation anomaly. By calibrating the CT number of the phase of interest (in this case, gold) it is possible to accurately measure particles down to <6 voxels in data acquired on two instruments, 14 years apart, despite severe artifacts. Altogether, the PVB method is accurate, reproducible, resolution-invariant, and objective; it is also notable for its favorable error structure. The principal challenge is the need for representative effective CT numbers, which reflect not only the features of interest themselves, but also the X-ray spectrum, the size, shape and composition of the enclosing sample, and processing details such as beam-hardening correction. Empirical calibration is the most effective approach. 
    more » « less
  5. Abstract. (U–Th) ∕ He thermochronometry relies on the accurate andprecise quantification of individual grain volume and surface area, whichare used to calculate mass, alpha ejection (FT) correction, equivalentsphere radius (ESR), and ultimately isotope concentrations and age. The vastmajority of studies use 2-D or 3-D microscope dimension measurements and anidealized grain shape to calculate these parameters, and a long-standingquestion is how much uncertainty these assumptions contribute to observedintra-sample age dispersion and accuracy. Here we compare the results forvolume, surface area, grain mass, ESR, and FT correction derived from2-D microscope and 3-D X-ray computed tomography (CT) length and width datafor > 100 apatite grains. We analyzed apatite grains from twosamples that exhibited a variety of crystal habits, some with inclusions. Wealso present 83 new apatite (U–Th) ∕ He ages to assess the influence of 2-D versus 3-D FT correction on sample age precision and effective uranium(eU). The data illustrate that the 2-D approach systematically overestimatesgrain volumes and surface areas by 20 %–25 %, impacting the estimates formass, eU, and ESR – important parameters with implications for interpretingage scatter and inverse modeling. FT factors calculated from 2-D and 3-Dmeasurements differ by ∼2 %. This variation, however, haseffectively no impact on reducing intra-sample age reproducibility, even onsmall aliquot samples (e.g., four grains). We also present a grain-mountingprocedure for X-ray CT scanning that can allow hundreds of grains to be scannedin a single session and new software capabilities for 3-D FT andFT-based ESR calculations that are robust for relatively low-resolutionCT data, which together enable efficient and cost-effective CT-basedcharacterization. 
    more » « less