This content will become publicly available on November 21, 2024
GeSnC alloys offer a route to direct bandgap semiconductors for CMOS-compatible lasers, but the use of CBr4 as a carbon source was shown to reduce Sn incorporation by 83%–92%. We report on the role of thermally cracked H in increasing Sn incorporation by 6x–9.5x, restoring up to 71% of the lost Sn, and attribute this increase to removal of Br from the growth surface as HBr prior to formation of volatile groups such as SnBr4. Furthermore, as the H flux is increased, Rutherford backscattering spectroscopy reveals a monotonic increase in both Sn and carbon incorporation. X-ray diffraction reveals tensile-strained films that are pseudomorphic with the substrate. Raman spectroscopy suggests substitutional C incorporation; both x-ray photoelectron spectroscopy and Raman suggest a lack of graphitic carbon or its other phases. For the lowest growth temperatures, scanning transmission electron microscopy reveals nanovoids that may account for the low Sn substitutional fraction in those layers. Conversely, the sample grown at high temperatures displayed abrupt interfaces, notably devoid of any voids, tin, or carbon-rich clusters. Finally, the surface roughness decreases with increasing growth temperature. These results show that atomic hydrogen provides a highly promising route to increase both Sn and C to achieve a strongly direct bandgap for optical gain and active silicon photonics.
more » « less- NSF-PAR ID:
- 10509569
- Publisher / Repository:
- J. Appl. Phys.
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 134
- Issue:
- 19
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Tensile-strained pseudomorphic Ge 1–x–y Sn x C y was grown on GaAs substrates by molecular beam epitaxy using carbon tetrabromide (CBr 4 ) at low temperatures (171–258 °C). High resolution x-ray diffraction reveals good crystallinity in all samples. Atomic force microscopy showed atomically smooth surfaces with a maximum roughness of 1.9 nm. The presence of the 530.5 cm −1 local vibrational mode of carbon in the Raman spectrum verifies substitutional C incorporation in Ge 1–x–y Sn x C y samples. X-ray photoelectron spectroscopy confirms carbon bonding with Sn and Ge without evidence of sp 2 or sp 3 carbon formation. The commonly observed Raman features corresponding to alternative carbon phases were not detected. Furthermore, no Sn droplets were visible in scanning electron microscopy, illustrating the synergy in C and Sn incorporation and the potential of Ge 1–x–y Sn x C y active regions for silicon-based lasers.more » « less
-
Direct bandgap group IV materials could provide intimate integration of lasers, amplifiers, and compact modulators within complementary metal–oxide–semiconductor for smaller, active silicon photonics. Dilute germanium carbides (GeC) with ∼1 at. % C offer a direct bandgap and strong optical emission, but energetic carbon sources such as plasmas and e-beam evaporation produce defective materials. In this work, we used CBr4 as a low-damage source of carbon in molecular beam epitaxy of tin-free GeC, with smooth surfaces and narrow x-ray diffraction peaks. Raman spectroscopy showed substitutional incorporation of C and no detectable sp2 bonding from amorphous or graphitic carbon, even without surfactants. Photoluminescence shows strong emission compared with Ge.
-
Abstract Material changes in yttrium-doped barium zirconate, BaZr 0.8 Y 0.2 O 3– x , were studied using in situ Raman spectroscopy and ex situ x-ray photoelectron spectroscopy analysis. During in situ Raman analysis, samples were heated to temperatures of 300–600 °C and exposed to both dry and humidified H 2 atmospheres. At the lower temperatures (300–450 °C), a new vibrational peak appears in the Raman spectra during exposure to humidified H 2 . The appearance of this feature is reversible, dependent on previous sample history, and possibly results from new, secondary phase formation or lattice distortion.more » « less
-
The incorporation of dilute concentrations of bismuth into traditional III–V alloys produces significant reductions in bandgap energy presenting unique opportunities in strain and bandgap engineering. However, the disparity between the ideal growth conditions for the host matrix and those required for substitutional bismuth incorporation has caused the material quality of these III–V–Bi alloys to lag behind that of conventional III–V semiconductors. InSb1−xBix, while experimentally underexplored, is a promising candidate for high-quality III–V–Bi alloys due to the relatively similar ideal growth temperatures for InSb and III–Bi materials. By identifying a highly kinetically limited growth regime, we demonstrate the growth of high-quality InSb1−xBix by molecular beam epitaxy. X-ray diffraction and Rutherford backscattering spectrometry (RBS) measurements of the alloy's bismuth concentration, coupled with smooth surface morphologies as measured by atomic force microscopy, suggest unity-sticking bismuth incorporation for a range of bismuth concentrations from 0.8% to 1.5% as measured by RBS. In addition, the first photoluminescence was observed from InSb1−xBix and demonstrated wavelength extension up to 7.6 μm at 230 K, with a bismuth-induced bandgap reduction of ∼29 meV/% Bi. Furthermore, we report the temperature dependence of the bandgap of InSb1−xBix and observed behavior consistent with that of a traditional III–V alloy. The results presented highlight the potential of InSb1−xBix as an alternative emerging candidate for accessing the longwave-infrared.
-
Abstract A synthetic route toward hybrid MoS2‐based materials that combines the 2D bonding of MoS2with 3D networking of aliphatic carbon chains is devised, leading to a film with enhanced electrocatalytic activity. The hybrid inorganic–organic thin films are synthesized by combining atomic layer deposition (ALD) with molecular layer deposition (MLD) using the precursors molybdenum hexacarbonyl and 1,2‐ethanedithiol and characterized by in situ Fourier transform infrared spectroscopy, and the resultant material properties are probed by X‐ray photoelectron spectroscopy, Raman spectroscopy, and grazing incidence X‐ray diffraction. The process exhibits a growth rate of 1.3 Å per cycle, with an ALD/MLD temperature window of 155–175 °C. The hybrid films are moderately stable for about a week in ambient conditions, smooth (σRMS≈ 5 Å for films 60 Å thick) and uniform, with densities ranging from 2.2–2.5 g cm−3. The material is both optically transparent and catalytically active for the hydrogen evolution reaction (HER), with an overpotential (294 mV at −10 mA cm−2) superior to that of planar MoS2. The enhancement in catalytic activity is attributed to the incorporation of organic chains into MoS2, which induces a morphological change during electrochemical testing that increases surface area and yields high activity HER catalysts without the need for deliberate nanostructuring.