skip to main content

Title: Developing an Observing Air–Sea Interactions Strategy (OASIS) for the global ocean

The Observing Air–Sea Interactions Strategy (OASIS) is a new United Nations Decade of Ocean Science for Sustainable Development programme working to develop a practical, integrated approach for observing air–sea interactions globally for improved Earth system (including ecosystem) forecasts, CO2 uptake assessments called for by the Paris Agreement, and invaluable surface ocean information for decision makers. Our “Theory of Change” relies upon leveraged multi-disciplinary activities, partnerships, and capacity strengthening. Recommendations from >40 OceanObs’19 community papers and a series of workshops have been consolidated into three interlinked Grand Ideas for creating #1: a globally distributed network of mobile air–sea observing platforms built around an expanded array of long-term time-series stations; #2: a satellite network, with high spatial and temporal resolution, optimized for measuring air–sea fluxes; and #3: improved representation of air–sea coupling in a hierarchy of Earth system models. OASIS activities are organized across five Theme Teams: (1) Observing Network Design & Model Improvement; (2) Partnership & Capacity Strengthening; (3) UN Decade OASIS Actions; (4) Best Practices & Interoperability Experiments; and (5) Findable–Accessible–Interoperable–Reusable (FAIR) models, data, and OASIS products. Stakeholders, including researchers, are actively recruited to participate in Theme Teams to help promote a predicted, safe, clean, healthy, resilient, and productive ocean.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Medium: X Size: p. 367-373
["p. 367-373"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Deep Ocean Observing Strategy (DOOS) is an international, community-driven initiative that facilitates collaboration across disciplines and fields, elevates a diverse cohort of early career researchers into future leaders, and connects scientific advancements to societal needs. DOOS represents a global network of deep-ocean observing, mapping, and modeling experts, focusing community efforts in the support of strong science, policy, and planning for sustainable oceans. Its initiatives work to propose deep-sea Essential Ocean Variables; assess technology development; develop shared best practices, standards, and cross-calibration procedures; and transfer knowledge to policy makers and deep-ocean stakeholders. Several of these efforts align with the vision of the UN Ocean Decade to generate the science we need to create the deep ocean we want. DOOS works toward (1) a healthy and resilient deep ocean by informing science-based conservation actions, including optimizing data delivery, creating habitat and ecological maps of critical areas, and developing regional demonstration projects; (2) a predicted deep ocean by strengthening collaborations within the modeling community, determining needs for interdisciplinary modeling and observing system assessment in the deep ocean; (3) an accessible deep ocean by enhancing open access to innovative low-cost sensors and open-source plans, making deep-ocean data Findable, Accessible, Interoperable, and Reusable, and focusing on capacity development in developing countries; and finally (4) an inspiring and engaging deep ocean by translating science to stakeholders/end users and informing policy and management decisions, including in international waters. 
    more » « less
  2. Abstract

    We use a statistical emulation technique to construct synthetic ensembles of global and regional sea‐air carbon dioxide (CO2) flux from four observation‐based products over 1985–2014. Much like ensembles of Earth system models that are constructed by perturbing their initial conditions, our synthetic ensemble members exhibit different phasing of internal variability and a common externally forced signal. Our synthetic ensembles illustrate an important role for internal variability in the temporal evolution of global and regional CO2flux and produce a wide range of possible trends over 1990–1999 and 2000–2009. We assume a specific externally forced signal and calculate the rank of the observed trends within the distribution of statistically modeled synthetic trends during these periods. Over the decade 1990–1999, three of four observation‐based products exhibit small negative trends in globally integrated sea‐air CO2flux (i.e., enhanced ocean CO2absorption with time) that are within one standard deviation of the mean in their respective synthetic ensembles. Over the decade 2000–2009, however, three products show large negative trends in globally integrated sea‐air CO2flux that have a low rate of occurrence in their synthetic ensembles. The largest positive trends in global and Southern Ocean flux over 1990–1999 and the largest negative trends over 2000–2009 fall nearly two standard deviations away from the mean in their ensembles. Our approach provides a new perspective on the important role of internal variability in sea‐air CO2flux trends, and furthers understanding of the role of internal and external processes in driving observed sea‐air CO2flux variability.

    more » « less
  3. Abstract

    Current information on the status and trends of ocean change is needed to support effective and responsive management, particularly for the deep ocean. Creating consistent, collaborative and actionable mechanisms is a key component of the Deep Ocean Observing Strategy, a program of the United Nations Decade of Ocean Science for Sustainable Development. Here, we share an iterative, agile, and human-centred approach to co-designing datastreams for deep-sea indicators that serves stakeholders, including US National Marine Sanctuaries, presented as a four-phase project roadmap initially focused on the Monterey Bay National Marine Sanctuary, and then generalized to other areas such as the US West Coast, offshore wind development areas, and managed marine spaces globally. Ongoing efforts to provide key physical, biogeochemical, biological, and ecosystem variables for California's Marine Protected Areas are informing this co-design process. We share lessons learned so far and present co-design as a useful tool for (1) assessing the availability of information from deep ecosystems, (2) ensuring interoperability, and (3) providing essential information on the status and trends of indicators. Documenting and sharing this co-design strategy and scalable four-phase roadmap will further the aims of DOOS and other initiatives, including the Deep Ocean Stewardship Initiative and Challenger 150.

    more » « less
  4. Abstract

    The13C/12C of dissolved inorganic carbon (δ13CDIC) carries valuable information on ocean biological C‐cycling, air‐sea CO2exchange, and circulation. Paleo‐reconstructions of oceanic13C from sediment cores provide key insights into past as changes in these three drivers. As a step toward full inclusion of13C in the next generation of Earth system models, we implemented13C‐cycling in a 1° lateral resolution ocean‐ice‐biogeochemistry Geophysical Fluid Dynamics Laboratory (GFDL) model driven by Common Ocean Reference Experiment perpetual year forcing. The model improved the mean of modernδ13CDICover coarser resolution GFDL‐model implementations, capturing the Southern Ocean decline in surfaceδ13CDICthat propagates to the deep sea via deep water formation. Controls onδ13CDICof the deep‐sea are quantified using both observations and model output. The biological control is estimated from the relationship between deep‐sea Pacificδ13CDICand phosphate (PO4). Theδ13CDIC:PO4slope from observations is revised to a value of 1.01 ± 0.02‰ (μmol kg−1)−1, consistent with a carbon to phosphate ratio of organic matter (C:Porg) of 124 ± 10. Model output yields a lowerδ13CDIC:PO4than observed due to too low C:Porg. The ocean circulation impacts deep modernδ13CDICin two ways, via the relative proportion of Southern Ocean and North Atlantic deep water masses, and via the preindustrialδ13CDICof these water mass endmembers. Theδ13CDICof the endmembers ventilating the deep sea are shown to be highly sensitive to the wind speed dependence of air‐sea CO2gas exchange. Reducing the coefficient for air‐sea gas exchange following OMIP‐CMIP6 protocols improves significantly surfaceδ13CDICrelative to previous gas exchange parameterizations.

    more » « less
  5. Abstract

    The Marine Biogeochemistry Library (MARBL) is a prognostic ocean biogeochemistry model that simulates marine ecosystem dynamics and the coupled cycles of carbon, nitrogen, phosphorus, iron, silicon, and oxygen. MARBL is a component of the Community Earth System Model (CESM); it supports flexible ecosystem configuration of multiple phytoplankton and zooplankton functional types; it is also portable, designed to interface with multiple ocean circulation models. Here, we present scientific documentation of MARBL, describe its configuration in CESM2 experiments included in the Coupled Model Intercomparison Project version 6 (CMIP6), and evaluate its performance against a number of observational data sets. The model simulates present‐day air‐sea CO2flux and many aspects of the carbon cycle in good agreement with observations. However, the simulated integrated uptake of anthropogenic CO2is weak, which we link to poor thermocline ventilation, a feature evident in simulated chlorofluorocarbon distributions. This also contributes to larger‐than‐observed oxygen minimum zones. Moreover, radiocarbon distributions show that the simulated circulation in the deep North Pacific is extremely sluggish, yielding extensive oxygen depletion and nutrient trapping at depth. Surface macronutrient biases are generally positive at low latitudes and negative at high latitudes. CESM2 simulates globally integrated net primary production (NPP) of 48 Pg C yr−1and particulate export flux at 100 m of 7.1 Pg C yr−1. The impacts of climate change include an increase in globally integrated NPP, but substantial declines in the North Atlantic. Particulate export is projected to decline globally, attributable to decreasing export efficiency associated with changes in phytoplankton community composition.

    more » « less