skip to main content


Search for: All records

Award ID contains: 1903148

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ocean‐atmosphere dynamics in the north Pacific play an important role in the global climate system and influence hydroclimate in western North America. However, changes to this region's mean climate under increased atmospheric greenhouse gas concentrations are not well understood. Here we present new alkenone‐based records of sea surface temperature (SST) from the northeast Pacific from the mid‐Piacenzian warm period (approximately 3.3–3.0 Ma), an interval considered to be an analog for near‐future climate under middle‐of‐the‐road anthropogenic emissions. We compare these and other alkenone‐based SST records from the north Pacific to fully‐coupled climate model simulations to examine the impact of mid‐Pliocene CO2and other boundary conditions on regional climate dynamics and to explore factors governing model disagreement about regional temperature patterns. Model performance varies regionally, with Community Earth System Model 1.2 (CESM 1.2) and CESM2 performing best in regions with greater warming like the California Margin, though these models underestimate the warming evidenced in our new proxy record and others from the region. Single forcing simulations reveal a strong influence for prescribed land surface changes and higher CO2levels on coastal warming patterns along the California Margin in CESM2. Furthermore, differences in shortwave and longwave radiation and circulation between the models, likely related to changes in the atmospheric component of the model, may play a key role in the ability of models to capture regionally‐varying patterns of Pliocene warmth. Regional patterns of temperature change inferred from geochemical records could therefore help to understand the impacts of different model parameterization schemes on regional climate patterns.

     
    more » « less
  2. Abstract

    The paleoclimatic record from Mexico and Central America, or Mesoamerica, documents dramatic swings in hydroclimate over the past few millennia. However, the dynamics underlying these past changes remain obscure. We use proxy indicators of hydroclimate to show that last millennium hydroclimate variability was dominated by opposite‐signed moisture anomalies in northern and southern Mesoamerica. This pattern results from changes in moisture convergence driven by Atlantic‐Pacific interbasin temperature gradients. While this pattern is reproduced by several models and multiple experiments with a single model, models appear to disagree about the underlying dynamics of this interbasin gradient. Moreover, disagreement about the interbasin gradient, and associated hydroclimate pattern, dominates spread in 21st century regional hydroclimate projections. These results emphasize the role of interbasin asymmetries in governing past and future regional climate change. They also demonstrate that paleoclimate studies can elucidate mechanisms directly relevant to projecting future hydroclimate in climate change hot spots like Mesoamerica.

     
    more » « less
  3. Abstract

    Efforts to estimate past global mean temperature and latitudinal gradients must contend with spatial heterogeneity in sea surface temperatures (SSTs). Here, we use modern SSTs to show that the environments from which most paleoclimatic data are drawn, shallow epeiric seas and continental margins, are systematically offset from zonal mean temperatures. Epeiric seas are warmer and more seasonal than open‐ocean values from the same latitudes, while continental margins exhibit consistent and predictable deviations related to gyre circulation. Warm temperatures inferred from Paleozoic proxy data may largely reflect that these data derive almost entirely from epeiric seas. Moreover, pseudoproxy analysis using Paleogene sampling localities demonstrates how undersampling of the full range of dynamical environments associated with gyre circulation can generate spurious estimates of latitudinal temperature gradients. Recognition of these global patterns permits a predictive framework within which to more robustly interpret proxy data, improve Earth system models, and reconstruct ancient dynamic regimes.

     
    more » « less
  4. The response of the terrestrial biosphere to warming remains one of the most poorly understood and quantified aspects of the climate system. One way to test the behavior of the Earth system in warm climate states is to examine the geological record. The abundance, distribution, and/or isotopic composition of source-specific organic molecules (biomarkers) have been used to reconstruct terrestrial paleoenvironmental change over a range of geological timescales. Here, we review new or recently improved biomarker approaches for reconstructing ( a) physical climate variables (land temperature, rainfall), ( b) ecosystem state variables (vegetation, fire regime), and ( c) biogeochemical variables (soil residence time, methane cycling). This review encompasses a range of key compound classes (e.g., lipids, lignin, and carbohydrates). In each section, we explore the concept behind key biomarker approaches and discuss their successes as paleoenvironmental indicators. We emphasize that analyzing several biomarkers in tandem can provide unique insights into the Earth system. ▪ Biomarkers can be used to reconstruct terrestrial environmental change over a range of geological timescales. ▪ Analyzing several biomarkers in tandem can provide unique insights into the Earth system. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 50 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  5. null (Ed.)
    As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted. 
    more » « less