skip to main content


Title: Past climates inform our future
As the world warms, there is a profound need to improve projections of climate change. Although the latest Earth system models offer an unprecedented number of features, fundamental uncertainties continue to cloud our view of the future. Past climates provide the only opportunity to observe how the Earth system responds to high carbon dioxide, underlining a fundamental role for paleoclimatology in constraining future climate change. Here, we review the relevancy of paleoclimate information for climate prediction and discuss the prospects for emerging methodologies to further insights gained from past climates. Advances in proxy methods and interpretations pave the way for the use of past climates for model evaluation—a practice that we argue should be widely adopted.  more » « less
Award ID(s):
1903148
NSF-PAR ID:
10262156
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
370
Issue:
6517
ISSN:
0036-8075
Page Range / eLocation ID:
eaay3701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Throughout Earth's history, CO 2 is thought to have exerted a fundamental control on environmental change. Here we review and revise CO 2 reconstructions from boron isotopes in carbonates and carbon isotopes in organic matter over the Cenozoic—the past 66 million years. We find close coupling between CO 2 and climate throughout the Cenozoic, with peak CO 2 levels of ∼1,500 ppm in the Eocene greenhouse, decreasing to ∼500 ppm in the Miocene, and falling further into the ice age world of the Plio–Pleistocene. Around two-thirds of Cenozoic CO 2 drawdown is explained by an increase in the ratio of ocean alkalinity to dissolved inorganic carbon, likely linked to a change in the balance of weathering to outgassing, with the remaining one-third due to changing ocean temperature and major ion composition. Earth system climate sensitivity is explored and may vary between different time intervals. The Cenozoic CO 2 record highlights the truly geological scale of anthropogenic CO 2 change: Current CO 2 levels were last seen around 3 million years ago, and major cuts in emissions are required to prevent a return to the CO 2 levels of the Miocene or Eocene in the coming century. ▪  CO 2 reconstructions over the past 66 Myr from boron isotopes and alkenones are reviewed and re-evaluated. ▪  CO 2 estimates from the different proxies show close agreement, yielding a consistent picture of the evolution of the ocean-atmosphere CO 2 system over the Cenozoic. ▪  CO 2 and climate are coupled throughout the past 66 Myr, providing broad constraints on Earth system climate sensitivity. ▪  Twenty-first-century carbon emissions have the potential to return CO 2 to levels not seen since the much warmer climates of Earth's distant past. 
    more » « less
  2. Abstract

    A fundamental divide exists between previous studies that conclude that polar amplification does not occur without sea ice and studies that find that polar amplification is an inherent feature of the atmosphere independent of sea ice. We hypothesize that a representation of climatological ocean heat transport is key for simulating polar amplification in ice-free climates. To investigate this, we run a suite of targeted experiments in the slab ocean aquaplanet configuration of CESM2-CAM6 with different profiles of prescribed ocean heat transport, which are invariant under CO2quadrupling. In simulations without climatological ocean heat transport, polar amplification does not occur. In contrast, in simulations with climatological ocean heat transport, robust polar amplification occurs in all seasons. What is causing this dependence of polar amplification on ocean heat transport? Energy-balance model theory is incapable of explaining our results and in fact would predict that introducing ocean heat transport leads to less polar amplification. We instead demonstrate that shortwave cloud radiative feedbacks can explain the divergent polar climate responses simulated by CESM2-CAM6. Targeted cloud locking experiments in the zero ocean heat transport simulations are able to reproduce the polar amplification of the climatological ocean heat transport simulations, solely by prescribing high-latitude cloud radiative feedbacks. We conclude that polar amplification in ice-free climates is underpinned by ocean–atmosphere coupling, through a less negative high latitude shortwave cloud radiative feedback that facilitates enhanced polar warming. In addition to reconciling previous disparities, these results have important implications for interpreting past equable climates and climate projections under high-emissions scenarios.

    Significance Statement

    Polar amplification is a robust feature of climate change in the modern-day climate. However, previous climate modeling studies fundamentally do not agree on whether polar amplification occurs in ice-free climates. In this study, we find in a state-of-the-art climate model that, if ocean heat transport is neglected, the response to an increase in CO2is not polar amplified, whereas robust polar amplification occurs if ocean heat transport is included. Using targeted model experiments, we diagnose cloud radiative effects as the driver of this divergent behavior. We conclude that polar amplification is a robust feature of the atmosphere–ocean system. Our results have important implications for interpreting past warm climates and future projections under high-emissions scenarios.

     
    more » « less
  3. Projecting climate change is a generalization problem: We extrapolate the recent past using physical models across past, present, and future climates. Current climate models require representations of processes that occur at scales smaller than model grid size, which have been the main source of model projection uncertainty. Recent machine learning (ML) algorithms hold promise to improve such process representations but tend to extrapolate poorly to climate regimes that they were not trained on. To get the best of the physical and statistical worlds, we propose a framework, termed “climate-invariant” ML, incorporating knowledge of climate processes into ML algorithms, and show that it can maintain high offline accuracy across a wide range of climate conditions and configurations in three distinct atmospheric models. Our results suggest that explicitly incorporating physical knowledge into data-driven models of Earth system processes can improve their consistency, data efficiency, and generalizability across climate regimes.

     
    more » « less
  4. As the world warms due to rising greenhouse gas concentrations, the Earth system moves toward climate states without societal precedent, challenging adaptation. Past Earth system states offer possible model systems for the warming world of the coming decades. These include the climate states of the Early Eocene (ca. 50 Ma), the Mid-Pliocene (3.3–3.0 Ma), the Last Interglacial (129–116 ka), the Mid-Holocene (6 ka), preindustrial (ca. 1850 CE), and the 20th century. Here, we quantitatively assess the similarity of future projected climate states to these six geohistorical benchmarks using simulations from the Hadley Centre Coupled Model Version 3 (HadCM3), the Goddard Institute for Space Studies Model E2-R (GISS), and the Community Climate System Model, Versions 3 and 4 (CCSM) Earth system models. Under the Representative Concentration Pathway 8.5 (RCP8.5) emission scenario, by 2030 CE, future climates most closely resemble Mid-Pliocene climates, and by 2150 CE, they most closely resemble Eocene climates. Under RCP4.5, climate stabilizes at Pliocene-like conditions by 2040 CE. Pliocene-like and Eocene-like climates emerge first in continental interiors and then expand outward. Geologically novel climates are uncommon in RCP4.5 (<1%) but reach 8.7% of the globe under RCP8.5, characterized by high temperatures and precipitation. Hence, RCP4.5 is roughly equivalent to stabilizing at Pliocene-like climates, while unmitigated emission trajectories, such as RCP8.5, are similar to reversing millions of years of long-term cooling on the scale of a few human generations. Both the emergence of geologically novel climates and the rapid reversion to Eocene-like climates may be outside the range of evolutionary adaptive capacity.

     
    more » « less
  5. The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states. 
    more » « less