skip to main content


Title: Patterns and Mechanisms of Northeast Pacific Temperature Response to Pliocene Boundary Conditions
Abstract

Ocean‐atmosphere dynamics in the north Pacific play an important role in the global climate system and influence hydroclimate in western North America. However, changes to this region's mean climate under increased atmospheric greenhouse gas concentrations are not well understood. Here we present new alkenone‐based records of sea surface temperature (SST) from the northeast Pacific from the mid‐Piacenzian warm period (approximately 3.3–3.0 Ma), an interval considered to be an analog for near‐future climate under middle‐of‐the‐road anthropogenic emissions. We compare these and other alkenone‐based SST records from the north Pacific to fully‐coupled climate model simulations to examine the impact of mid‐Pliocene CO2and other boundary conditions on regional climate dynamics and to explore factors governing model disagreement about regional temperature patterns. Model performance varies regionally, with Community Earth System Model 1.2 (CESM 1.2) and CESM2 performing best in regions with greater warming like the California Margin, though these models underestimate the warming evidenced in our new proxy record and others from the region. Single forcing simulations reveal a strong influence for prescribed land surface changes and higher CO2levels on coastal warming patterns along the California Margin in CESM2. Furthermore, differences in shortwave and longwave radiation and circulation between the models, likely related to changes in the atmospheric component of the model, may play a key role in the ability of models to capture regionally‐varying patterns of Pliocene warmth. Regional patterns of temperature change inferred from geochemical records could therefore help to understand the impacts of different model parameterization schemes on regional climate patterns.

 
more » « less
Award ID(s):
1903148 1903171 2103015
NSF-PAR ID:
10369821
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
37
Issue:
7
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    During the mid‐Holocene (MH: ∼6,000 years Before Present) and Last Interglacial LIG (LIG: ∼129,000–116,000 years Before Present) differences in the seasonal and latitudinal distribution of insolation drove Northern Hemisphere high‐latitude warming comparable to that projected for the end of the 21st century in low emissions scenarios. Paleoclimate proxy records point to distinct but regionally variable hydroclimatic changes during these past warm intervals. However, model simulations have generally disagreed on North American regional moisture patterns during the MH and LIG. To investigate how closely the latest generation of models associated with the Paleoclimate Model Intercomparison Project (PMIP4) reproduces proxy‐inferred moisture patterns during recent warm periods, we compare hydroclimate output from 17 PMIP4 models with newly updated compilations of moisture‐sensitive North American proxy records during the MH and LIG. Agreement is lower for the MH, with models producing wet anomalies across the western United States (US) where most proxies indicate increased aridity relative to the preindustrial period. The models that agree most closely with the LIG proxy compilation display relative wetness in the eastern US and Alaska, and dryness in the northwest and central US. An assessment of atmospheric dynamics using an ensemble of the three LIG simulations that best agree with the proxies suggests that weaker winter North Pacific pressure gradients and steeper summer North Pacific and Atlantic gradients drive LIG precipitation patterns. Our updated compilations and proxy‐model comparisons offer a tool for benchmarking climate models and their performance in simulating climate states that are warmer than present.

     
    more » « less
  2. Abstract

    The transition from the warm, stable climate of the Pliocene to the progressively colder glaciations of the Pleistocene, as well as the climate system's evolving response to stationary orbital forcing over the Pleistocene, beg important questions about fundamental climate processes relevant to understanding the impacts of modern anthropogenic forcing of the Earth's energy budget. Here, we gain insight into the evolution of Plio‐Pleistocene climate by generating an alkenone‐derived, orbitally resolved sea surface temperature (SST) record from Ocean Drilling Program Site 1125 in the southwest Pacific. We compare our data set to midlatitude and equatorial SST records and to the benthic ∂18O signal in order to evaluate similarities and differences in climate response between the hemispheres and across latitudes over the Plio‐Pleistocene. Secular trends indicate first‐order symmetry between the Northern and Southern Hemispheres in the magnitude of mean, glacial, and interglacial cooling. However, the tight coupling that is observed on both secular and orbital timescales between Northern Hemisphere, high latitude, and tropical upwelling climate throughout the last 4 Ma does not extend to Southern Hemisphere climate records as Northern Hemisphere glaciation intensifies in the late Pliocene. The 41‐kyr signal remains weak at Site 1125 across the late Pliocene transition but strengthens in conjunction with a major increase in global climate system sensitivity to obliquity forcing beginning around 1.8 Ma. Our analysis points to regionally varied responses across the late Pliocene transition and the emergence of a global feedback mechanism and strengthened obliquity‐band climate sensitivity just prior to the mid‐Pleistocene transition.

     
    more » « less
  3. null (Ed.)
    International Ocean Discovery Program Expedition 382, Iceberg Alley and South Falkland Slope Ice and Ocean Dynamics, will investigate the long-term climate history of Antarctica, seeking to understand how polar ice sheets responded to changes in atmospheric CO2 in the past and how ice sheet evolution influenced global sea level. We will drill six sites in the Scotia Sea, east of the Antarctic Peninsula, providing the first deep drilling in this region of the Southern Ocean. We expect to recover >600 m of late Neogene sediment that will be used to reconstruct the past history and variability in Antarctic Ice Sheet (AIS) mass loss and associated changes in oceanic and atmospheric circulation. Expedition 382 expects to deliver the first spatially and temporally integrated record of iceberg flux from “Iceberg Alley,” the main pathway by which icebergs are calved from the margin of the AIS and travel equatorward into warmer waters of the Antarctic Circumpolar Current (ACC). In particular, we will characterize the magnitude of iceberg flux during key times of AIS evolution: • The middle Miocene glacial intensification of the East Antarctic Ice Sheet, • The mid-Pliocene warm interval, • The late Pliocene glacial expansion of the West Antarctic Ice Sheet, • The mid-Pleistocene transition, and • The “warm interglacials” and glacial terminations of the last 800 ky. We will use the geochemical provenance of iceberg-rafted detritus and other glacially eroded material to determine regional sources of AIS mass loss in this region, address interhemispheric phasing of ice sheet growth and decay, study the distribution and history of land-based versus marine-based ice sheets around the continent over time, and explore the links between AIS variability and global sea level. By comparing north–south variations across the Scotia Sea, Expedition 382 will also deliver critical information on how climate changes in the Southern Ocean affect ocean circulation through the Drake Passage, meridional overturning in the region, water-mass production, CO2 transfer by wind-induced upwelling, sea ice variability, bottom water outflow from the Weddell Sea, Antarctic weathering inputs, and changes in oceanic and atmospheric fronts in the vicinity of the ACC. Comparing changes in dust proxy records between the Scotia Sea and Antarctic ice cores will also provide a detailed reconstruction of changes in the Southern Hemisphere westerlies on millennial and orbital timescales for the last 800 ky. Extending the ocean dust record beyond the last 800 ky will help to evaluate climate-dust couplings since the Pliocene, the potential role of dust in iron fertilization and atmospheric CO2 drawdown during glacials, and whether dust input to Antarctica played a role in the mid-Pleistocene transition. The principal scientific objective of the South Falkland Slope sites to the north is to reconstruct and understand how ocean circulation and intermediate water formation responds to changes in climate with a special focus on the connectivity between the Atlantic and Pacific basins. The South Falkland Slope Drift, a contourite drift on the Falkland margin deposited between 400 and 2000 m water depth, is ideally situated to monitor millennial- to orbital-scale variability in the export of Antarctic Intermediate Water beneath the Subantarctic Front over at least the last 2 My. We anticipate that these sites will yield a wide array of paleoceanographic records that can be used to interpret past changes in the density structure of the Atlantic sector of the Southern Ocean and track the migration of the Subantarctic Front. We expect the cored sediments to capture the following significant climate episodes: • The most recent warm interglacials of the late Pleistocene; • The mid-Pleistocene transition, when δ18O records shifted from dominantly 41 to 100 ky periodicity; and possibly • Mid-Pliocene warm intervals, often invoked as the best analog for possible future climate change. 
    more » « less
  4. Abstract

    The early‐to mid‐Pliocene (5.3–3 Ma), characterized by warmer temperatures and similar CO2concentrations to present day, is considered a useful analog for future warming scenarios. Geological evidence suggests that during the Pliocene, many modern‐day desert regions received higher levels of rainfall and supported large perennial lakes and wetter vegetation types. These wetter conditions have been difficult to reconcile with model predictions of 21st century drying over most subtropical land regions. Using an atmospheric General Circulation Model, we show that underestimates of Pliocene rainfall over certain areas in models may be related to insufficient sea surface temperature (SST) warmth simulated over relatively local eastern boundary current regions. When SSTs off the coast of California are raised to more closely match some proxy reconstructions, rainfall increases over much of adjacent western North America. Over the southwestern USA, this increased rainfall is mainly due to a convergent monsoonal circulation that develops over late boreal summer. A smaller wintertime increase in precipitation also occurs due to differences in rainfall associated with midlatitude cyclones. Wetter land conditions are expected to weaken upwelling‐favorable coastal winds, so that increased rainfall caused by coastal SST warming suggests a positive feedback that could help sustain wet, Pliocene‐like conditions.

     
    more » « less
  5. Abstract

    The Pliocene offers insights into future climate, with near‐modern atmospheric pCO2and global mean surface temperature estimated to be 3–4°C above pre‐industrial. However, the hydrological response differs between future global warming and early Pliocene climate model simulations. This discrepancy results from the use of reduced meridional and zonal sea surface temperature (SST) gradients, based on foraminiferal Mg/Ca and Alkenone proxy evidence, to force the early Pliocene simulation. Subsequent, SST reconstructions based on the organic proxy TEX86, have found warmer temperatures in the warm pool, bringing the magnitude of the gradient reductions into dispute. We design an independent test of Pliocene SST scenarios and their hydrological cycle “fingerprints.” We use an isotope‐enabled General Circulation Model, iCAM5, to model the distribution of water isotopes in precipitation in response to four climatological SST and sea‐ice fields representing modern, abrupt 4 × CO2, late Pliocene and early Pliocene climates. We conduct a proxy‐model comparison with all the available precipitation isotope proxy data, and we identify target regions that carry precipitation isotopic fingerprints of SST gradients as priorities for additional proxy reconstructions. We identify two regions with distinct precipitation isotope (D/H) fingerprints resulting from reduced SST gradients: the Maritime Continent (D‐enriched due to reduced convective rainfall) and the Sahel (wetter, more deep convection, D‐depleted). The proxy‐model comparison using available plant wax reconstructions, mostly from Africa, is promising but inconclusive. Additional proxy reconstructions are needed in both target regions and in much of the world for significant tests of SST scenarios and dynamical linkages to the hydrological cycle.

     
    more » « less