skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unravelling the interplay between SIDM and baryons in MW haloes: defining where baryons dictate heat transfer
ABSTRACT We present a new set of cosmological zoom-in simulations of a Milky Way (MW)-like galaxy that for the first time include elastic velocity-dependent self-interacting dark matter (SIDM) and IllustrisTNG physics. With these simulations, we investigate the interaction between SIDM and baryons and its effects on the galaxy evolution process. We also introduce a novel set of modified dark matter-only simulations that can reasonably replicate the effects of fully realized hydrodynamics on the DM halo while simplifying the analysis and lowering the computational cost. We find that baryons change the thermal structure of the central region of the halo to a greater extent than the SIDM scatterings for MW-like galaxies. Additionally, we find that the new thermal structure of the MW-like halo causes SIDM to create cuspier central densities rather than cores because the SIDM scatterings remove the thermal support by transferring heat away from the centre of the galaxy. We find that this effect, caused by baryon contraction, begins to affect galaxies with a stellar mass of 108 M⊙ and increases in strength to the MW-mass scale.  more » « less
Award ID(s):
2008490 2007355 2107724 1909933 1909831
PAR ID:
10392618
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
519
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5623-5636
Size(s):
p. 5623-5636
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Self-interacting dark matter (SIDM) models offer one way to reconcile inconsistencies between observations and predictions from collisionless cold dark matter (CDM) models on dwarf-galaxy scales. In order to incorporate the effects of both baryonic and SIDM interactions, we study a suite of cosmological-baryonic simulations of Milky-Way (MW)-mass galaxies from the Feedback in Realistic Environments (FIRE-2) project where we vary the SIDM self-interaction cross-section σ/m. We compare the shape of the main dark matter (DM) halo at redshift z = 0 predicted by SIDM simulations (at σ/m = 0.1, 1, and 10 cm2 g−1) with CDM simulations using the same initial conditions. In the presence of baryonic feedback effects, we find that SIDM models do not produce the large differences in the inner structure of MW-mass galaxies predicted by SIDM-only models. However, we do find that the radius where the shape of the total mass distribution begins to differ from that of the stellar mass distribution is dependent on σ/m. This transition could potentially be used to set limits on the SIDM cross-section in the MW. 
    more » « less
  2. ABSTRACT We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $$M_{\rm halo} \approx 10^{10}\, {\rm M}_{\odot }$$ at z = 0, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r1/2 < 500 pc) have lower σ⋆/Vmax ratios, reinforcing the idea that smaller dwarfs may reside in haloes that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in ΛCDM. The V1/2–r1/2 relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Overall, the inclusion of baryons substantially reduces any distinct signatures of dark matter physics in the observable properties of dwarf galaxies. Spatially resolved rotation curves in the central regions (<400 pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r1/2 values can only originate from dark matter self-interactions. 
    more » « less
  3. ABSTRACT We combine the isothermal Jeans model and the model of adiabatic halo contraction into a semi-analytic procedure for computing the density profile of self-interacting dark-matter (SIDM) haloes with the gravitational influence from the inhabitant galaxies. The model agrees well with cosmological SIDM simulations over the entire core-forming stage up to the onset of gravothermal core-collapse. Using this model, we show that the halo response to baryons is more diverse in SIDM than in CDM and depends sensitively on galaxy size, a desirable feature in the context of the structural diversity of bright dwarfs. The fast speed of the method facilitates analyses that would be challenging for numerical simulations – notably, we quantify the SIDM halo response as functions of the baryonic properties, on a fine mesh grid spanned by the baryon-to-total-mass ratio, Mb/Mvir, and galaxy compactness, r1/2/Rvir; we show with high statistical precision that for typical Milky-Way-like systems, the SIDM profiles are similar to their CDM counterparts; and we delineate the regime of core-collapse in the Mb/Mvir − r1/2/Rvir space, for a given cross section and concentration. Finally, we compare the isothermal Jeans model with the more sophisticated gravothermal fluid model, and show that the former yields faster core formation and agrees better with cosmological simulations. We attribute the difference to whether the target CDM halo is used as a boundary condition or as the initial condition for the gravothermal evolution, and thus comment on possible improvements of the fluid model. We have made our model publicly available at https://github.com/JiangFangzhou/SIDM. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ. 
    more » « less
  5. null (Ed.)
    ABSTRACT Halo models provide a simple and computationally inexpensive way to investigate the connection between galaxies and their dark matter haloes. However, these models rely on the assumption that the role of baryons can easily be parametrized in the modelling procedure. We aim to examine the ability of halo occupation distribution (HOD) modelling to reproduce the galaxy clustering found in two different hydrodynamic simulations, Illustris and EAGLE. For each simulation, we measure several galaxy clustering statistics on two different luminosity threshold samples. We then apply a simple five parameter HOD, which was fit to each simulation separately, to the corresponding dark matter-only simulations, and measure the same clustering statistics. We find that the halo mass function is shifted to lower masses in the hydrodynamic simulations, resulting in a galaxy number density that is too high when an HOD is applied to the dark matter-only simulation. However, the exact way in which baryons alter the mass function is remarkably different in the two simulations. After applying a correction to the halo mass function in each simulation, the HOD is able to accurately reproduce all clustering statistics for the high luminosity sample of galaxies. For the low luminosity sample, we find evidence that in addition to correcting the halo mass function, including spatial, velocity, and assembly bias parameters in the HOD is necessary to accurately reproduce clustering statistics. 
    more » « less