skip to main content

Title: Evolution, history, and use of stem taper equations: a review of their development, application, and implementation
Stem taper equations, which predict the change in stem form from ground to tip, have become the primary means for estimating bole volume. Stem taper equations can provide predictions with similar levels of accuracy as volume equations, but with greater flexibility, a wider range of potential uses, and consistency between taper and volume. This review is a synthesis of the current state of knowledge on stem taper equations and an assessment of challenges for future model refinement. It includes the history and evolution of stem taper model forms, which have received tremendous attention and focus over the last several decades. Additional focal areas covered are (i) the use of additional covariates beyond tree diameter at breast height (DBH) and total height; (ii) alternative statistical methods for developing stem taper equations such as parametric, semiparametric, and nonparametric approaches; (iii) key considerations for proper development, application, and use of stem taper equations such as sample size requirements, local calibration, and evaluation; and (iv) a synthesis of key findings, future opportunities, and ongoing challenges. Current and developing technologies such as terrestrial laser scanning (TLS) offer an unprecedented opportunity to measure stem form in much greater detail at significantly lower costs and time requirements than traditional methods. Overall, continued development, refinement, and application of stem taper equations will remain important given the critical nature of tree volume for science, accurate inventories, and ultimately, sustainable forest management.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Canadian Journal of Forest Research
Page Range / eLocation ID:
210 to 235
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Measuring and modelling the shape of tree stems is a fundamental component of forest inventory systems for both commercial and biological purposes. The change in diameter of the stem along its length (a.k.a. 'taper') is one of the most important and widely used means of predicting tree stem volume. Until recently, the options for obtaining accurate estimates of stem taper and developing stem taper models have been limited to measurements of felled trees or the use of optical dendrometers on standing live trees. Here, we tested both a tripod-mounted terrestrial laser scanner (TLS; a Focus 3D 120 of FARO Technologies, Inc., Lake Mary, FL, USA), and a mobile laser scanner (MLS; the ZEB1 of the GeoSLAM Ltd, Nottingham, UK) to measure tree diameters at various heights along the stem of 20 destructively harvested broadleaf and needleleaf species using the outer hull modelling method, for the purpose of developing individual-tree and species-specific taper models. Laser scanner specifications were a major factor determining stem taper measurement accuracy. The longer-range, low beam divergence TLS could estimate stem diameter to an average of 15.7 m above ground (about 79 per cent of the canopy height), while the shorter-range high beam divergence MLS could estimate an average of 11.5 m above ground (about 45 per cent of the canopy height). Stem taper error increased with respect to height above ground, with the TLS providing more consistent and reliable diameter measurements (root mean square error (RMSE) = 1.93 cm; 9.57 per cent) compared with the MLS (RMSE = 2.59 cm; 12.84 per cent), but both methods were nearly unbiased. We attribute ~60 per cent of the uncertainty in stem measurements to laser beam diameter and point density, showing positive and negative correlations, respectively. MLS was unable to converge on the two tested taper models but was found to be an efficient means of easily sampling diameters at breast height (DBH) and reconstructing stem maps in simple forest stands with trees greater than ~10 cm DBH. TLS provided precision stem diameter measurements that allowed for the creation of similar taper models for three out of the four study species. Future work should focus on evaluating MLS systems with improved specifications (e.g. beam divergence and range), since these instruments will likely lead to dramatic improvements in reliable estimates of forest inventory parameters, in line with the current TLS technology.

    more » « less
  2. Roberts, Scott (Ed.)

    On-the-ground sample-based forest inventory methods have been the standard practice for more than a century, however, remote sensing technologies such as airborne laser scanning (ALS) are providing wall-to-wall inventories based on individual tree measurements. In this study, we assess the accuracy of individual tree height, diameter, and volume derived from field-cruising measurements and three ALS data-derived methods in a 1.1 ha stand using direct measurements acquired on felled trees and log-scale volume measurements. Results show that although height derived from indirect conventional field measurements and ALS were statistically equivalent to felled tree height measurements, ALS measured heights had lower root mean square error (RMSE) and bias. Individual tree diameters modeled using a height-to-diameter-at-breast-height model derived from local forest inventory data and the software ForestView had moderate RMSE (8.3–8.5 cm) and bias (-3.0 – -0.3 cm). The ALS-based methods underdetected trees but accounted for 78%–91% of the field reference harvested merchantable volume and 71%–99% of the merchantable volume scaled at the mill. The results also illustrate challenges of using mill-scaled volume estimates as validation data and highlight the need for more research in this area. Overall, the results provide key insights to forest managers on accuracies associated with conventional field-derived and ALS-derived individual tree inventories.

    Study Implications: Forest inventory data provide critical information for operational decisions and forest product supply chain planning. Traditionally, forest inventories have used field sampling of stand conditions, which is time-intensive and cost-prohibitive to conduct at large spatial scales. Remote sensing technologies such as airborne laser scanning (ALS) provide wall-to-wall inventories based on individual tree measurements. This study advances our understanding of the accuracy of conventional field-derived and ALS-derived individual tree inventories by evaluating these inventories with felled tree and log scaling data. The results provide key insights to forest managers on errors associated with conventional field and ALS-derived individual tree measurements.

    more » « less
  3. The introduction of machine learning (ML) components in software projects has created the need for software engineers to collaborate with data scientists and other specialists. While collaboration can always be challenging, ML introduces additional challenges with its exploratory model development process, additional skills and knowledge needed, difficulties testing ML systems, need for continuous evolution and monitoring, and non-traditional quality requirements such as fairness and explainability. Through interviews with 45 practitioners from 28 organizations, we identified key collaboration challenges that teams face when building and deploying ML systems into production. We report on common collaboration points in the development of production ML systems for requirements, data, and integration, as well as corresponding team patterns and challenges. We find that most of these challenges center around communication, documentation, engineering, and process, and collect recommendations to address these challenges. 
    more » « less
  4. Stem counts of tall shrubs (height from 0.3 to greater than 2 meters) during 2019, 2020, 2021 and 2022 as sampled within n = 594 5-meter radius plots (area = 78.5 square meters), each centered on a selected white spruce adult called "Focal Tree". The purpose of this dataset was to examine spatial variation in tall shrub densities of the most important genera across the Brooks Range and in relation to local microclimates. It also provides a baseline for future shrub stem counts to determine changes in abundance. 
    more » « less
  5. null (Ed.)
    In this review, we discuss the current status and future challenges for fully elucidating the fungal tree of life. In the last 15 years, advances in genomic technologies have revolutionized fungal systematics, ushering the field into the phylogenomic era. This has made the unthinkable possible, namely access to the entire genetic record of all known extant taxa. We first review the current status of the fungal tree and highlight areas where additional effort will be required. We then review the analytical challenges imposed by the volume of data and discuss methods to recover the most accurate species tree given the sea of gene trees. Highly resolved and deeply sampled trees are being leveraged in novel ways to study fungal radiations, species delimitation, and metabolic evolution. Finally, we discuss the critical issue of incorporating the unnamed and uncultured dark matter taxa that represent the vast majority of fungal diversity. 
    more » « less