skip to main content


Search for: All records

Award ID contains: 1917716

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2024
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
    Augmented reality (AR) applications are growing in popularity in educational settings. While the effects of AR experiences on learning have been widely studied, there is relatively less research on understanding the impact of AR on the dynamics of co-located collaborative learning, specifically in the context of novices programming robots. Educational robotics are a powerful learning context because they engage students with problem solving, critical thinking, STEM (Science, Technology, Engineering, Mathematics) concepts, and collaboration skills. However, such collaborations can suffer due to students having unequal access to resources or dominant peers. In this research we investigate how augmented reality impacts learning and collaboration while peers engage in robot programming activities. We use a mixed methods approach to measure how participants are learning, manipulating resources, and engaging in problem solving activities with peers. We investigate how these behaviors are impacted by the presence of augmented reality visualizations, and by participants? proximity to resources. We find that augmented reality improved overall group learning and collaboration. Detailed analysis shows that AR strongly helps one participant more than the other, by improving their ability to learn and contribute while remaining engaged with the robot. Furthermore, augmented reality helps both participants maintain a common ground and balance contributions during problem solving activities. We discuss the implications of these results for designing AR and non-AR collaborative interfaces. 
    more » « less
  5. null (Ed.)