skip to main content


Search for: All records

Award ID contains: 1931270

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It has recently been shown that the evolution of a linear Partial Differential Equation (PDE) can be more conveniently represented in terms of the evolution of a higher spatial derivative of the state. This higher spatial derivative (termed the `fundamental state') lies in $L_2$ - requiring no auxiliary boundary conditions or continuity constraints. Such a representation (termed a Partial Integral Equation or PIE) is then defined in terms of an algebra of bounded integral operators (termed Partial Integral (PI) operators) and is constructed by identifying a unitary map from the fundamental state to the state of the original PDE. Unfortunately, when the PDE is nonlinear, the dynamics of the associated fundamental state are no longer parameterized in terms of PI operators. However, in this paper we show that such dynamics can be compactly represented using a new tensor algebra of partial integral operators acting on the tensor product of the fundamental state. We further show that this tensor product of the fundamental state forms a natural distributed equivalent of the monomial basis used in representation of polynomials on a finite-dimensional space. This new representation is then used to provide a simple SDP-based Lyapunov test of stability of quadratic PDEs. The test is applied to three illustrative examples of quadratic PDEs. 
    more » « less
    Free, publicly-accessible full text available December 15, 2024
  2. — This paper proposes a method for certifying the local asymptotic stability of a given nonlinear Ordinary Differential Equation (ODE) by using Sum-of-Squares (SOS) programming to search for a partially quadratic Lyapunov Function (LF). The proposed method is particularly well suited to the stability analysis of ODEs with high dimensional state spaces. This is due to the fact that partially quadratic LFs are parametrized by fewer decision variables when compared with general SOS LFs. The main contribution of this paper is using the Center Manifold Theorem to show that partially quadratic LFs that certify the local asymptotic stability of a given ODE exist under certain conditions. 
    more » « less
    Free, publicly-accessible full text available May 31, 2024
  3. Many dynamical systems described by nonlinear ODEs are unstable. Their associated solutions do not converge towards an equilibrium point, but rather converge towards some invariant subset of the state space called an attractor set. For a given ODE, in general, the existence, shape and structure of the attractor sets of the ODE are unknown. Fortunately, the sublevel sets of Lyapunov functions can provide bounds on the attractor sets of ODEs. In this paper we propose a new Lyapunov characterization of attractor sets that is well suited to the problem of finding the minimal attractor set. We show our Lyapunov characterization is non-conservative even when restricted to Sum-of-Squares (SOS) Lyapunov functions. Given these results, we propose a SOS programming problem based on determinant maximization that yields an SOS Lyapunov function whose \begin{document}$ 1 $\end{document}-sublevel set has minimal volume, is an attractor set itself, and provides an optimal outer approximation of the minimal attractor set of the ODE. Several numerical examples are presented including the Lorenz attractor and Van-der-Pol oscillator.

     
    more » « less