skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A model-free method for learning flexibility capacity of loads providing grid support
Flexible loads are a resource for the Balancing Authority (BA) of the future to aid in the balance of power supply and demand. In order to be used as a resource, the BA must know the capacity of the flexible loads to vary their power demand over a baseline without violating consumers' quality of service (QoS). Existing work on capacity characterization is model-based: They need models relating power consumption to variables that dictate QoS, such as temperature in the case of an air conditioning system. However, in many cases the model parameters are not known or are difficult to obtain. In this work, we pose a data driven capacity characterization method that does not require model information, it only needs access to a simulator. The capacity is characterized as the set of feasible spectral densities (SDs) of the demand deviation. The proposed method is an extension of our recent work on SD-based capacity characterization that was limited to the case where the loads dynamic model is completely known. Numerical evaluation of the method is provided, which compares our approach to the model-based solution of our past work.  more » « less
Award ID(s):
1934322 1646229
PAR ID:
10281468
Author(s) / Creator(s):
;
Date Published:
Journal Name:
American Control Conference
Page Range / eLocation ID:
2881 to 2886
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a control architecture for distributed coordination of a collection of on/off TCLs (thermostatically con- trolled loads), such as residential air conditioners, to provide the same service to the power grid as a large battery. A key constraint is to ensure that consumers’ quality of service (QoS) is maintained. Our proposal involves replac- ing the thermostats at the loads by a randomized controller, following recent proposals in this direction. The new local controller has a tunable parameter that serves as the control command from the balancing authority (BA). Com- pared to prior work in this area, our proposed architecture can handle large disturbances from the outside temperature. Weather-induced disturbance also imposes an algorithm-independent limit on the capacity of the virtual energy storage the loads can provide. This key limitation, which was ignored in prior work, is incorporated in our formulation in a principled manner. 
    more » « less
  2. null (Ed.)
    We propose a decentralized algorithm to help reduce demand-supply imbalance in a power grid by varying the demand from loads, just like charging and discharging a battery. The algorithm ensures strict bounds on the consumers' quality of service (QoS) by constraining the bandwidth of demand variation. A model-predictive-control formulation is adopted to compute local decisions at the loads. The algorithm is decentralized in the sense that loads do not communicate with one another. Instead, loads coordinate using local measurements of the grid frequency, which provide information about global demand-supply imbalance. It is envisioned that consumers will be recruited through long-term contracts, aided by the QoS guarantees provided by the proposed scheme. Simulation results show that loads are able to reduce frequency deviations while maintaining QoS constraints and that the performance of the algorithm scales well with the number of loads. Closed-loop stability is established under some assumptions. 
    more » « less
  3. Stoustrup J., Annaswamy A. (Ed.)
    Loads are expected to help the power grid of the future in balancing the highs and lows caused by intermittent renewables such as solar and wind. With appropriate intelligence, loads will be able manipulate demand around a nominal baseline so that the increase and decrease of demand appears like charging and discharging of a battery, thereby creating a virtual energy storage (VES) device. An important question for the control systems community is: how to control these flexible loads so that the apparently conflicting goal of maintaining consumers’ quality of service (QoS) and providing reliable grid support are achieved? We advocate a frequency domain thinking of handling both of these issues, along the lines of a recent paper. In this article, we discuss some of the challenges and opportunities in designing appropriate control algorithms and coordination architectures in obtaining reliable VES from flexible loads. 
    more » « less
  4. Alessandro Astolfi (Ed.)
    Demand dispatch is the science of extracting virtual energy storage through the automatic control of deferrable loads to provide balancing or regulation services to the grid, while maintaining consumer-end quality of service.The control of a large collection of heterogeneous loads is in part a resource allocation problem, since different classes of loads are more valuable for different services. The goal of this paper is to unveil the structure of the optimal solution to the resource allocation problem, and investigate short-term market implications. It is found that the marginal cost for each load class evolves in a two-dimensional subspace: spanned by a co-state process and its derivative. The resource allocation problem is recast to construct a dynamic competitive equilibrium model, in which the consumer utility is the negative of the cost of deviation from ideal QoS. It is found that a competitive equilibrium exists with the equilibrium price equal to the negative of an optimal co-state process. Moreover, the equilibrium price is different than what would be obtained based on the standard assumption that the consumer's utility is a function of power consumption. 
    more » « less
  5. Voltage collapse is a type of blackout-inducing dynamic instability that occurs when the power demand exceeds the maximum power that can be transferred through the network. The traditional (preventive) approach to avoid voltage collapse is based on ensuring that the network never reaches its maximum capacity. However, such an approach leads to inefficiencies as it prevents operators to fully utilize the network resources and does not account for unprescribed events. To overcome this limitation, this paper seeks to initiate the study of voltage collapse stabilization. More precisely, for a DC star network, we formulate the problem of voltage stability as a dynamic problem where each load seeks to achieve a constant power consumption by updating its conductance as the voltage changes. We show that such a system can be interpreted as a game, where each player (load) seeks to myopically maximize their utility using a gradient-based response. Using this framework, we show that voltage collapse is the unique Nash Equilibrium of the induced game and is caused by the lack of cooperation between loads. Finally, we propose a Voltage Collapse Stabilizer (VCS) controller that uses (flexible) loads that are willing to cooperate and provides a fair allocation of the curtailed demand. Our solution stabilizes voltage collapse even in the presence of non-cooperative loads. Numerical simulations validate several features of our controllers. 
    more » « less