Developmental plasticity can occur at any life stage, but plasticity that acts early in development may give individuals a competitive edge later in life. Here, we asked if early (pre-feeding) exposure to a nutrient-rich resource impacts hatchling morphology in Mexican spadefoot toad tadpoles, Spea multiplicata . A distinctive carnivore morph can be induced when tadpoles eat live fairy shrimp. We investigated whether cues from shrimp––detected before individuals are capable of feeding––alter hatchling morphology such that individuals could potentially take advantage of this nutritious resource once they begin feeding. We found that hatchlings with early developmental exposure to shrimp were larger and had larger jaw muscles––traits that, at later stages, increase a tadpole's competitive ability for shrimp. These results suggest that early developmental stages can assess and respond to environmental cues by producing resource-use phenotypes appropriate for future conditions. Such anticipatory plasticity may be an important but understudied form of developmental plasticity.
more »
« less
This content will become publicly available on May 27, 2026
Flamingos use their L-shaped beak and morphing feet to induce vortical traps for prey capture
Flamingos feature one of the most sophisticated filter-feeding systems among birds, characterized by upside-down feeding, comb-like lamellae, and a piston-like tongue. However, the hydrodynamic functions of their L-shaped chattering beak, S-curved neck, and distinct behaviors such as stomping and feeding against the flow remain a mystery. Combining live flamingo experiments with live brine shrimp and passive particles, bioinspired physical models, and 3D CFD simulations, we show that flamingos generate self-induced vortical traps using their heads, beaks, and feet to capture agile planktonic prey in harsh fluid environments. When retracting their heads rapidly (~40 cm/s), flamingos generate tornado-like vortices that stir up and upwell bottom sediments and live shrimp aided by their L-shaped beak. Remarkably, they also induce directional flows (~7 cm/s) through asymmetric beak chattering underwater (~12 Hz). Their morphing feet create horizontal eddies during stomping, lifting, and concentrating sediments and brine shrimp, while trapping fast-swimming invertebrates, as confirmed by using a 3D-printed morphing foot model. During interfacial skimming, flamingos produce a vortical recirculation zone at the beak’s tip, aiding in prey capture. Experiments using a flamingo-inspired particle collection system indicate that beak chattering improves capture rates by ~7×. These findings offer design principles for bioinspired particle collection systems that may be applied to remove pollutants and harmful microorganisms from water bodies.
more »
« less
- PAR ID:
- 10617983
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 122
- Issue:
- 21
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Phenotypic features define feeding selectivity in planktonic predators and therefore determine energy flow through food webs. In current‐feeding cnidarian hydromedusae, swimming and predation are coupled such that swimming also brings prey into contact with feeding structures. Fluid mechanical disturbances may initiate escape responses by flow‐sensing prey. Previous studies have not considered how fluid signals define the trophic niche of current‐feeding gelatinous predators. We used the hydromedusaClytia gregariato determine (1) how passive (sinking) and active (swimming) feeding behavior affects pre‐encounter responses of prey to the medusae‐induced fluid motion, and (2) how prey responses affect the medusae's ingestion efficiencies. Videography of the predation process showed that passive prey such as invertebrate larvae were ingested during both feeding behaviors, whereas flow‐sensing prey such as copepods escaped the predator's active feeding behavior, but were unable to detect the predator's passive sinking behavior and were ingested (KWX2= 19.8246, df = 4,p < 0.001). Flow visualizations using particle image velocimetry (PIV) showed fluid deformation values during passive feeding below threshold values that trigger escape responses of copepods. To address whether fluid signals mediate prey capture, we compared fluid signals produced by three hydromedusae with different diets.Aequorea victoriaandMitrocoma cellulariaproduced higher deformation thanC. gregaria(two‐way ANOVA,F2,52= 5.532,p= 0.007), which explains their previously documented negative selection for flow‐sensing prey like copepods. Through the analysis of hydromedusan feeding behaviors and pre‐encounter prey escapes, we provide evidence that fluid signatures shape the trophic niches of gelatinous predators.more » « less
-
Prorocentrum comprises a diverse group of bloom-forming dinophytes with a worldwide distribution. Although photosynthetic, mixoplanktonic phagotrophy has also been described. Recently, the small P. cf. balticum was shown to use a remarkable feeding strategy by crafting globular mucus traps to capture and immobilize potential prey. Here we present evidence showing that two additional related species, the recently described P. pervagatum and the cosmopolitan bloom-forming P. cordatum, also produce large (80–120 µm) mucus traps supporting their mixoplanktonic activity. Prey are captured within the traps either through passive entanglement upon contact with the outside surface, or through active water movement created by rotating Prorocentrum cells eddying particles to the inside surface where trapped live prey cells became immobilized. Entrapment in mucus assisted deployment into the prey of a peduncle extruded from the apical area of the Prorocentrum cell. Phagotrophy by P. pervagatum supported faster growth compared to unfed controls and time series quantification of food vacuoles revealed ingestion rates of ca. 10–12 Teleaulax prey cells day−1. Model calculations show clear advantages of deploying a mucus trap for increasing prey encounter rates. This study demonstrates that the large size and immobilization properties of mucus traps successfully increase the availability of prey for small Prorocentrum species, whose peduncle feeding mode impedes consumption of actively moving prey, and that this strategy is common among certain clades of small planktonic Prorocentrum species.more » « less
-
Abstract The name “millipede” translates to a thousand feet (from mille “thousand” and pes “foot”). However, no millipede has ever been described with more than 750 legs. We discovered a new record-setting species of millipede with 1,306 legs, Eumillipes persephone , from Western Australia. This diminutive animal (0.95 mm wide, 95.7 mm long) has 330 segments, a cone-shaped head with enormous antennae, and a beak for feeding. A distant relative of the previous record holder, Illacme plenipes from California, it belongs to a different order, the Polyzoniida. Discovered 60 m below ground in a drill hole created for mineral exploration, E. persephone possesses troglomorphic features; it lacks eyes and pigmentation, and it has a greatly elongated body—features that stand in stark contrast to its closest surface-dwelling relatives in Australia and all other members of its order. Using phylogenomics, we found that super-elongation (> 180 segments) evolved repeatedly in the millipede class Diplopoda. The striking morphological similarity between E. persephone and I. plenipes is a result of convergent evolution, probably for locomotion in similar soil habitats. Discovered in the resource-rich Goldfields-Esperance region and threatened by encroaching surface mining, documentation of this species and conservation of its habitat are of critical importance.more » « less
-
The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.more » « less
An official website of the United States government
