skip to main content


Search for: All records

Award ID contains: 1950330

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Statics is a required course for the biological and environmental engineering majors, but it often focuses solely on mechanical and civil engineering applications. With no connection to their career, students often see a drop in performance and career development. Therefore, new problems from biological and environmental engineering disciplines are introduced into the course. This study examines the self-efficacy developed within students and the perceived value they ascribe to new problems that teach fundamental statics concepts and focus on biological and environmental principles. The study collected data from 133 students over three semesters. The effect of this intervention was measured by administering a pre-and post-survey at the beginning and end of the course to the Biological, Civil, Environmental, and Mechanical Engineering students found in the class. The surveys asked the participants to rate five questions about their self-efficacy and seven questions about their perceived value for the newly introduced homework problems. Ratings were conducted with a five-point Likert scale. Self-efficacy (SE) and perceived value (PV) were studied because of their correlation to performance and future career development. This is a work in progress, and there is an ongoing effort to continue to build the data pool of biological and environmental engineering students since the numbers of those that participated in the study are not large enough to empirically arrive at a conclusion. As such, this study will only be looking at the trend data for the biological end environmental engineering students.The change in the Mean for the SE pre (4.14±0.74) and post (4.10±1.03) data and PV pre (3.40±0.89) and post (3.62±0.73) data showed that there was an improvement in the PV of the course by the Biological and Environmental Engineering students after the new problems were introduced. SE did not reveal any significant difference. This also correlated with the trend in the mean for SE and PV for each individual semesters’ survey. In addition to this, the Wilcoxon signed-rank test was used to find significant changes in the data for pre-and postsurveys ranking of the nonparametric data. The results indicated that there was a significant increase in students’ PV of the course (pvalue = 0.003) while the SE was not significant (pvalue= 0.128). This study shows that even though authentic Biological and Environmental focused engineering problems have no impact on the students' self-efficacy, they still found the intervention valuable and helpful to their understanding of the course. This value was derived by adding Biological and Environmental engineering-focused questions to Statics and this implies that instructors can maximize the effectiveness of their instruction by implementing majorspecific examples and assignments in their classes. 
    more » « less
  2. This paper describes a National Science Foundation-funded Research Experiences for Undergraduates (REU) Site program conducted through virtual working environment. Due to the Covid-19 pandemic, REU 2021 activities were conducted online through Canvas and Zoom communication platforms. The major aim of this program is to provide undergraduate students with experiences in engineering education research (i.e., education research in the context of engineering). This paper provides an overview of the program, and briefly describes the virtual working environment, and students’ research experiences during the 10-week program. A total of 11 undergraduate students, seven graduate mentors, and seven faculty mentors have actively participated in the program. The program is conducted in two phases: Phases 1 (i.e., Weeks 1-2) and 2 (i.e., Weeks 3-10). Phase 1 consists of preparatory and foundational work that is delivered to participants and will allow them to begin Phase 2 with some educational research foundation already established. The results of the project evaluation show that the program has made a positive impact on increasing education research skills and communication skills of the participating REU students. The participating REU students reported that the research projects they worked on increased their motivation and confidence for continuing to engage in engineering education research. Four participants (i.e., 36.4% of the total participants) suggested that, if available, they would prefer face-to-face over a virtual REU program. Another four participants (i.e., 36.4%) felt that both face-to-face and virtual would offer the same quality of research experiences, and 3 participants (i.e., 27.2% of the total participants) voiced their preference of virtual over face-to-face REU program. 
    more » « less
  3. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affect E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally. 
    more » « less
  4. There is an urgent need to recruit, train, and sustain a diverse engineering workforce able to meet the socio-technical challenges of 21st century society. Together, student veterans and service members (SVSM) are a unique yet understudied student group that comprises substantial numbers of those historically underrepresented in engineering (i.e., due to race, ethnicity, gender, ability, orientation, etc.). That, in combination with technical interests and skills, maturity, life experience, and self-discipline, makes SVSM ideal candidates for helping engineering education meet these demands [1,2]. This NSF CAREER project aims to advance full participation of SVSMs within higher engineering education and the engineering workforce by 1) Research Plan: developing deeper understandings about how SVSM participate, persist, and produce professional identities in engineering and 2) Education Plan: putting new assets based understandings of SVSM experiences into practice through collaborative development, implementation and broad dissemination of evidence-based military ally and mentorship programs in engineering and awareness/support trainings for engineering faculty, staff, and administrators. 
    more » « less