Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit.
more »
« less
Optimization of Quantum Circuits for Stabilizer Codes
Quantum computing is an emerging technology that has the potential to achieve exponential speedups over their classical counterparts. To achieve quantum advantage, quantum principles are being applied to fields such as communications, information processing, and artificial intelligence. However, quantum computers face a fundamental issue since quantum bits are extremely noisy and prone to decoherence. Keeping qubits error free is one of the most important steps towards reliable quantum computing. Different stabilizer codes for quantum error correction have been proposed in past decades and several methods have been proposed to import classical error correcting codes to the quantum domain. Design of encoding and decoding circuits for the stabilizer codes have also been proposed. Optimization of these circuits in terms of the number of gates is critical for reliability of these circuits. In this paper, we propose a procedure for optimization of encoder circuits for stabilizer codes. Using the proposed method, we optimize the encoder circuit in terms of the number of 2-qubit gates used. The proposed optimized eight-qubit encoder uses 18 CNOT gates and 4 Hadamard gates, as compared to 14 single qubit gates, 33 2-qubit gates, and 6 CCNOT gates in a prior work. The encoder and decoder circuits are verified using IBM Qiskit. We also present encoder circuits for the Steane code and a 13-qubit code, that are optimized with respect to the number of gates used, leading to a reduction in number of CNOT gates by 1 and 8, respectively.
more »
« less
- Award ID(s):
- 1954749
- PAR ID:
- 10501232
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Circuits and Systems I: Regular Papers
- ISSN:
- 1549-8328
- Page Range / eLocation ID:
- 1 to 11
- Subject(s) / Keyword(s):
- Quantum ECCs , quantum computation stabilizer codes , eight-qubit code , 13-qubit code , quantum encoders and decoders , syndrome detection
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Entanglement is essential for quantum information processing, but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n−1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from high-performance quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary states in surface codes, with potential extensions to more general quantum low-density parity-check codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing.more » « less
-
The challenge of quantum computing is to combine error resilience with universal computation. Diagonal gates such as the transversal T gate play an important role in implementing a universal set of quantum operations. This paper introduces a framework that describes the process of preparing a code state, applying a diagonal physical gate, measuring a code syndrome, and applying a Pauli correction that may depend on the measured syndrome (the average logical channel induced by an arbitrary diagonal gate). It focuses on CSS codes, and describes the interaction of code states and physical gates in terms of generator coefficients determined by the induced logical operator. The interaction of code states and diagonal gates depends very strongly on the signs of Z -stabilizers in the CSS code, and the proposed generator coefficient framework explicitly includes this degree of freedom. The paper derives necessary and sufficient conditions for an arbitrary diagonal gate to preserve the code space of a stabilizer code, and provides an explicit expression of the induced logical operator. When the diagonal gate is a quadratic form diagonal gate (introduced by Rengaswamy et al.), the conditions can be expressed in terms of divisibility of weights in the two classical codes that determine the CSS code. These codes find application in magic state distillation and elsewhere. When all the signs are positive, the paper characterizes all possible CSS codes, invariant under transversal Z -rotation through π / 2 l , that are constructed from classical Reed-Muller codes by deriving the necessary and sufficient constraints on l . The generator coefficient framework extends to arbitrary stabilizer codes but there is nothing to be gained by considering the more general class of non-degenerate stabilizer codes.more » « less
-
Abstract Photonic graph states are important for measurement- and fusion-based quantum computing, quantum networks, and sensing. They can in principle be generated deterministically by using emitters to create the requisite entanglement. Finding ways to minimize the number of entangling gates between emitters and understanding the overall optimization complexity of such protocols is crucial for practical implementations. Here, we address these issues using graph theory concepts. We develop optimizers that minimize the number of entangling gates, reducing them by up to 75% compared to naive schemes for moderately sized random graphs. While the complexity of optimizing emitter-emitter CNOT counts is likely NP-hard, we are able to develop heuristics based on strong connections between graph transformations and the optimization of stabilizer circuits. These patterns allow us to process large graphs and still achieve a reduction of up to 66% in emitter CNOTs, without relying on subtle metrics such as edge density. We find the optimal emission orderings and circuits to prepare unencoded and encoded repeater graph states of any size, achieving global minimization of emitter and CNOT resources despite the average NP-hardness of both optimization problems. We further study the locally equivalent orbit of graphs. Although enumerating orbits is#P complete for arbitrary graphs, we analytically calculate the size of the orbit of repeater graphs and find a procedure to generate the orbit for any repeater size. Finally, we inspect the entangling gate cost of preparing any graph from a given orbit and show that we can achieve the same optimal CNOT count across the orbit.more » « less
-
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthesis is a process of decomposing an arbitrary unitary into a sequence of quantum gates, and can be used as an optimization tool to produce shorter circuits to improve overall circuit fidelity. However, the time-to-solution of synthesis grows exponentially with the number of qubits. As a result, synthesis is intractable for circuits on a large qubit scale. In this paper, we propose a hierarchical, block-by-block opti-mization framework, QGo, for quantum circuit optimization. Our approach allows an exponential cost optimization to scale to large circuits. QGo uses a combination of partitioning and synthesis: 1) partition the circuit into a sequence of independent circuit blocks; 2) re-generate and optimize each block using quantum synthesis; and 3) re-compose the final circuit by stitching all the blocks together. We perform our analysis and show the fidelity improvements in three different regimes: small-size circuits on real devices, medium-size circuits on noisy simulations, and large-size circuits on analytical models. Our technique can be applied after existing optimizations to achieve higher circuit fidelity. Using a set of NISQ benchmarks, we show that QGo can reduce the number of CNOT gates by 29.9% on average and up to 50% when compared with industrial compiler optimizations such as t|ket). When executed on the IBM Athens system, shorter depth leads to higher circuit fidelity. We also demonstrate the scalability of our QGo technique to optimize circuits of 60+ qubits, Our technique is the first demonstration of successfully employing and scaling synthesis in the compilation tool chain for large circuits. Overall, our approach is robust for direct incorporation in production compiler toolchains to further improve the circuit fidelity.more » « less
An official website of the United States government

