skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1955353

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures are used extensively to accelerate inferencing/training with convolutional neural networks (CNNs). Three-dimensional (3D) integration is an enabling technology to integrate many PIM cores on a single chip. In this work, we propose the design of athermallyefficient dataflow-aware monolithic 3D (M3D)NoC architecture referred to asTEFLONto accelerate CNN inferencing without creating any thermal bottlenecks.TEFLONreduces the Energy-Delay-Product (EDP) by 42%, 46%, and 45% on an average compared to a conventional 3D mesh NoC for systems with 36-, 64-, and 100-PIM cores, respectively.TEFLONreduces the peak chip temperature by 25Kand improves the inference accuracy by up to 11% compared to sole performance-optimized SFC-based counterpart for inferencing with diverse deep CNN models using CIFAR-10/100 datasets on a 3D system with 100-PIM cores. 
    more » « less