skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2003198

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Requiring less data for accurate models, few-shot learning has shown robustness and generality in many application domains. However, deploying few-shot models in untrusted environments may inflict privacy concerns, e.g., attacks or adversaries that may breach the privacy of user-supplied data. This paper studies the privacy enhancement for the few-shot learning in an untrusted environment, e.g., the cloud, by establishing a novel privacy-preserved embedding space that preserves the privacy of data and maintains the accuracy of the model. We examine the impact of various image privacy methods such as blurring, pixelization, Gaussian noise, and differentially private pixelization (DP-Pix) on few-shot image classification and propose a method that learns privacy-preserved representation through the joint loss. The empirical results show how privacy-performance trade-off can be negotiated for privacy-enhanced few-shot learning. 
    more » « less
  2. Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices). However, the data distribution among clients is often non-IID in nature, making efficient optimization difficult. To alleviate this issue, many FL algorithms focus on mitigating the effects of data heterogeneity across clients by introducing a variety of proximal terms, some incurring considerable compute and/or memory overheads, to restrain local updates with respect to the global model. Instead, we consider rethinking solutions to data heterogeneity in FL with a focus on local learning generality rather than proximal restriction. To this end, we first present a systematic study informed by second-order indicators to better understand algorithm effectiveness in FL. Interestingly, we find that standard regularization methods are surprisingly strong performers in mitigating data heterogeneity effects. Based on our findings, we further propose a simple and effective method, FedAlign, to overcome data heterogeneity and the pitfalls of previous methods. FedAlign achieves competitive accuracy with state-of-the-art FL methods across a variety of settings while minimizing computation and memory overhead. Code is available at https://github.com/mmendiet/FedAlign. 
    more » « less
  3. Federated Learning (FL) over wireless multi-hop edge computing networks, i.e., multi-hop FL, is a cost-effective distributed on-device deep learning paradigm. This paper presents FedEdge simulator, a high-fidelity Linux-based simulator, which enables fast prototyping, sim-to-real code, and knowledge transfer for multi-hop FL systems. FedEdge simulator is built on top of the hardware-oriented FedEdge experimental framework with a new extension of the realistic physical layer emulator. This emulator exploits trace-based channel modeling and dynamic link scheduling to minimize the reality gap between the simulator and the physical testbed. Our initial experiments demonstrate the high fidelity of the FedEdge simulator and its superior performance on sim-to-real knowledge transfer in reinforcement learning -optimized multi-hop FL 
    more » « less
  4. null (Ed.)