Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Signature is an infinite graded sequence of statistics known to characterize geometric rough paths. While the use of the signature in machine learning is successful in low-dimensional cases, it suffers from the curse of dimensionality in high-dimensional cases, as the number of features in the truncated signature transform grows exponentially fast. With the idea of Convolutional Neural Network, we propose a novel neural network to address this problem. Our model reduces the number of features efficiently in a data-dependent way. Some empirical experiments including high-dimensional financial time series classification and natural language processing are provided to support our convolutional signature model.more » « less
-
Toninelli, C (Ed.)We study the smoothness of the solution of the directed chain stochastic differential equations, where each process is affected by its neighborhood process in an infinite directed chain graph, introduced by Detering et al. (2020). Because of the auxiliary process in the chain-like structure, classic methods of Malliavin derivatives are not directly applicable. Namely, we cannot make a connection between the Malliavin derivative and the first order derivative of the state process. It turns out that the partial Malliavin derivatives can be used here to fix this problem.more » « less
-
Krause, Andreas; Brunskill, Emma_Patricia; Cho, Kyunghyun; Engelhardt, Barbara_Elizabeth; Sabato, Sivan; Scarlett, Jonathan (Ed.)Real-world data can be multimodal distributed, e.g., data describing the opinion divergence in a community, the interspike interval distribution of neurons, and the oscillators' natural frequencies. Generating multimodal distributed real-world data has become a challenge to existing generative adversarial networks (GANs). For example, it is often observed that Neural SDEs have only demonstrated successful performance mainly in generating unimodal time series datasets. In this paper, we propose a novel time series generator, named directed chain GANs (DC-GANs), which inserts a time series dataset (called a neighborhood process of the directed chain or input) into the drift and diffusion coefficients of the directed chain SDEs with distributional constraints. DC-GANs can generate new time series of the same distribution as the neighborhood process, and the neighborhood process will provide the key step in learning and generating multimodal distributed time series. The proposed DC-GANs are examined on four datasets, including two stochastic models from social sciences and computational neuroscience, and two real-world datasets on stock prices and energy consumption. To our best knowledge, DC-GANs are the first work that can generate multimodal time series data and consistently outperforms state-of-the-art benchmarks with respect to measures of distribution, data similarity, and predictive ability.more » « less
-
Abstract We analyze the systemic risk for disjoint and overlapping groups of financial institutions by proposing new models with realistic game features.Specifically, we generalize the systemic risk measure proposed in[F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance Stoch. 24 (2020), 2, 513–564]by allowing individual banks to choose their preferred groups instead of being assigned to certain groups.We introduce the concept of Nash equilibrium for these new models, and analyze the optimal solution under Gaussian distribution of the risk factor.We also provide an explicit solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equilibrium both theoretically and numerically.The developed numerical algorithm can simulate scenarios of equilibrium, and we apply it to study the banking structure with real data and show the validity of the proposed model.more » « less
-
null (Ed.)The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power-law shape function and non-stationary noises with a power-law variance function. In this paper, we study sample path properties of the generalized fractional Brownian motion, including Hölder continuity, path differentiability/non-differentiability, and functional and local law of the iterated logarithms.more » « less
-
null (Ed.)The study of linear-quadratic stochastic differential games on directed networks was initiated in Feng, Fouque & Ichiba [7]. In that work, the game on a directed chain with finite or infinite players was defined as well as the game on a deterministic directed tree, and their Nash equilibria were computed. The current work continues the analysis by first developing a random directed chain structure by assuming the interaction between every two neighbors is random. We solve explicitly for an open-loop Nash equilibrium for the system and we find that the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain introduced in [7]. The discussion about stochastic differential games is extended to a random two-sided directed chain and a random directed tree structure.more » « less
-
null (Ed.)We study linear-quadratic stochastic differential games on directed chains inspired by the directed chain stochastic differential equations introduced by Detering, Fouque and Ichiba. We solve explicitly for Nash equilibria with a finite number of players and we study more general finite-player games with a mixture of both directed chain interaction and mean field interaction. We investigate and compare the corresponding games in the limit when the number of players tends to infinity. The limit is characterized by Catalan functions and the dynamics under equilibrium is an infinite-dimensional Gaussian process described by a Catalan Markov chain, with or without the presence of mean field interaction.more » « less
An official website of the United States government

Full Text Available