Abstract Gravitational memory effects are predictions of general relativity that are characterized by an observable effect that persists after the passage of gravitational waves. In recent years, they have garnered particular interest, both due to their connection to asymptotic symmetries and soft theorems and because their observation would serve as a unique test of the nonlinear nature of general relativity. Apart from the more commonly known displacement and spin memories, however, there are other memory effects predicted by Einstein’s equations that are associated with more subleading terms in the asymptotic expansion of the Bondi-Sachs metric. In this paper, we write explicit expressions for these higher memory effects in terms of their charge and flux contributions. Further, by using a numerical relativity simulation of a binary black hole merger, we compute the magnitude and morphology of these terms and compare them to those of the displacement and spin memory. We find that, although these terms are interesting from a theoretical perspective, due to their small magnitude they will be particularly challenging to observe with current and future detectors.
more »
« less
This content will become publicly available on October 22, 2025
A review of gravitational memory and BMS frame fixing in numerical relativity
Abstract Gravitational memory effects and the BMS freedoms exhibited at future null infinity have recently been resolved and utilized in numerical relativity simulations. With this, gravitational wave models and our understanding of the fundamental nature of general relativity have been vastly improved. In this paper, we review the history and intuition behind memory effects and BMS symmetries, how they manifest in gravitational waves, and how controlling the infinite number of BMS freedoms of numerical relativity simulations can crucially improve the waveform models that are used by gravitational wave detectors. We reiterate the fact that, with memory effects and BMS symmetries, not only can these next-generation numerical waveforms be used to observe never-before-seen physics, but they can also be used to test GR and learn new astrophysical information about our Universe.
more »
« less
- PAR ID:
- 10558078
- Publisher / Repository:
- Classical and Quantum Gravity
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 41
- Issue:
- 22
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 223001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Gravitational-wave memory effects arise from nonoscillatory components of gravitational-wave signals, and they are predictions of general relativity in the nonlinear regime that have close connections to the asymptotic properties of isolated gravitating systems. There are many types of memory effects that have been studied in the literature. In this paper we focus on the “displacement” and “spin” memories, which are expected to be the largest of these effects from sources such as the binary black hole mergers which have already been detected by LIGO and Virgo. The displacement memory is a change in the relative separation of two initially comoving observers due to a burst of gravitational waves, whereas the spin memory is a portion of the change in relative separation of observers with initial relative velocity. As both of these effects are small, LIGO, Virgo, and KAGRA can only detect memory effects from individual events that are much louder (and thus rarer) than those that have been detected so far. By combining data from multiple events, however, these effects could be detected in a population of binary mergers. In this paper, we present new forecasts for how long current and future detectors will need to operate in order to measure these effects from populations of binary black hole systems that are consistent with the populations inferred from the detections from LIGO and Virgo’s first three observing runs. We find that a second-generation detector network of LIGO, Virgo, and KAGRA operating at the O4 (“design”) sensitivity for 1.5 years and then operating at the O5 (“plus”) sensitivity for an additional 1.5 years can detect the displacement memory. For Cosmic Explorer, we find that displacement memory could be detected for individual loud events, and that the spin memory could be detected in a population after 5 years of observation time.more » « less
-
null (Ed.)Accurate models of gravitational waves from merging binary black holes are crucial for detectors to measure events and extract new science. One important feature that is currently missing from the Simulating eXtreme Spacetimes (SXS) Collaboration’s catalog of waveforms for merging black holes, and other waveform catalogs, is the gravitational memory effect: a persistent, physical change to spacetime that is induced by the passage of transient radiation. We find, however, that by exploiting the Bondi-van der Burg-Metzner-Sachs (BMS) balance laws, which come from the extended BMS transformations, we can correct the strain waveforms in the SXS catalog to include the missing displacement memory. Our results show that these corrected waveforms satisfy the BMS balance laws to a much higher degree of accuracy. Furthermore, we find that these corrected strain waveforms coincide especially well with the waveforms obtained from Cauchy-characteristic extraction (CCE) that already exhibit memory effects. These corrected strain waveforms also evade the transient junk effects that are currently present in CCE waveforms. Last, we make our code for computing these contributions to the BMS balance laws and memory publicly available as a part of the python package sxs, thus enabling anyone to evaluate the expected memory effects and violation of the BMS balance laws.more » « less
-
ABSTRACT Tidal interactions in coalescing binary neutron stars modify the dynamics of the inspiral and hence imprint a signature on their gravitational wave (GW) signals in the form of an extra phase shift. We need accurate models for the tidal phase shift in order to constrain the supranuclear equation of state from observations. In previous studies, GW waveform models were typically constructed by treating the tide as a linear response to a perturbing tidal field. In this work, we incorporate non-linear corrections due to hydrodynamic three- and four-mode interactions and show how they can improve the accuracy and explanatory power of waveform models. We set up and numerically solve the coupled differential equations for the orbit and the modes and analytically derive solutions of the system’s equilibrium configuration. Our analytical solutions agree well with the numerical ones up to the merger and involve only algebraic relations, allowing for fast phase shift and waveform evaluations for different equations of state over a large parameter space. We find that, at Newtonian order, non-linear fluid effects can enhance the tidal phase shift by $$\gtrsim 1\, {\rm radian}$$ at a GW frequency of 1000 Hz, corresponding to a $$10{{\%}}-20{{\%}}$$ correction to the linear theory. The scale of the additional phase shift near the merger is consistent with the difference between numerical relativity and theoretical predictions that account only for the linear tide. Non-linear fluid effects are thus important when interpreting the results of numerical relativity and in the construction of waveform models for current and future GW detectors.more » « less
-
Abstract Errors due to imperfect boundary conditions in numerical relativity simulations of binary black holes (BBHs) can produce unphysical reflections of gravitational waves which compromise the accuracy of waveform predictions, especially for subdominant modes. A system of higher order absorbing boundary conditions which greatly reduces this problem was introduced in earlier work (Buchman and Sarbach 2006Class. Quantum Grav.236709). In this paper, we devise two new implementations of this boundary condition system in the Spectral Einstein Code (SpEC), and test them in both linear multipolar gravitational wave and inspiralling mass ratio 7:1 BBH simulations. One of our implementations in particular is shown to be extremely robust and to produce accuracy superior to the standard freezing-Ψ0boundary condition usually used bySpEC.more » « less