Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Design-for-test/debug (DfT/D) introduces scan chain testing to increase testability and fault coverage by inserting scan flip-flops. However, these scan chains are also known to be a liability for security primitives. In previous research, the dynamically obfuscated scan chain (DOSC) was introduced to protect logic-locking keys from scan-based attacks by obscuring test patterns and responses. In this paper, we present DOSCrack, an oracle-guided attack to de-obfuscate DOSC using symbolic execution and binary clustering, which significantly reduces the candidate seed space to a manageable quantity. Our symbolic execution engine employs scan mode simulation and satisfiability modulo theories (SMT) solvers to reduce the possible seed space, while obfuscation key clustering allows us to effectively rule out a group of seeds that share similarities. An integral component of our approach is the use of sequential equivalence checking (SEC), which aids in identifying distinct simulation patterns to differentiate between potential obfuscation keys. We experimentally applied our DOSCrack framework on four different sizes of DOSC benchmarks and compared their runtime and complexity. Finally, we propose a low-cost countermeasure to DOSCrack which incorporates a nonlinear feedback shift register (NLFSR) to increase the effort of symbolic execution modeling and serves as an effective defense against our DOSCrack framework. Our research effectively addresses a critical vulnerability in scan-chain obfuscation methodologies, offering insights into DfT/D and logic locking for both academic research and industrial applications. Our framework highlights the need to craft robust and adaptable defense mechanisms to counter evolving scan-based attacks.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Recent decades have witnessed a remarkable pace of innovation and performance improvements in integrated circuits (ICs), which have become indispensable in an array of critical applications ranging from military infrastructure to personal healthcare. Meanwhile, recent developments have brought physical security to the forefront of concern, particularly considering the valuable assets handled and stored within ICs. Among the various invasive attack vectors, micro-probing attacks have risen as a particularly menacing threat. These attacks leverage advanced focused ion beam (FIB) systems to enable post-silicon secret eavesdropping and circuit modifications with minimal traceability. As an evolved variant of micro-probing attacks, reroute attacks possess the ability to actively disable built-in shielding measures, granting access to the security-sensitive signals concealed beneath. To address and counter these emerging challenges, we introduce a layout-level framework known as Detour-RS. This framework is designed to automatically assess potential vulnerabilities, offering a systematic approach to identifying and mitigating exploitable weaknesses. Specifically, we employed a combination of linear and nonlinear programming-based approaches to identify the layout-aware attack costs in reroute attempts given specific target assets. The experimental results indicate that shielded designs outperform non-shielded structures against reroute attacks. Furthermore, among the two-layer shield configurations, the orthogonal layout exhibits better performance compared to the parallel arrangement. Furthermore, we explore both independent and dependent scenarios, where the latter accounts for potential interference among circuit edit locations. Notably, our results demonstrate a substantial near 50% increase in attack cost when employing the more realistic dependent estimation approach. In addition, we also propose time and gas consumption metrics to evaluate the resource consumption of the attackers, which provides a perspective for evaluating reroute attack efforts. We have collected the results for different categories of target assets and also the average resource consumption for each via, required during FIB reroute attack.more » « less
-
Benchmarking can drive the development of technologies by facilitating standardization of features for comparison of different methods. While hardware security has seen an exponential growth in innovation throughout the last decade, the lack of sufficient benchmarks for data-driven analysis is prominent. Researchers must currently rely on decades-old VLSI benchmarks, which in most cases were not designed with security evaluation in mind. Considering the present day computational power, these benchmarks lack in both quality and quantity for usage in hardware security topics such as obfuscation and hardware Trojans. Many advanced techniques, like statistical analysis and machine learning, require a large number of samples in order to sufficiently examine the feature space. In an attempt to resolve this issue, we have developed the first synthetic benchmark generation process flow. This paper describes our novel technique that utilizes linear optimization to generate an endless number of synthetic combinational benchmarks that are adaptable to user input constraints and divergent in quantifiable structural features from input reference benchmarks. Thus, our framework offers customization for generating richer and more challenging benchmarks for data-driven hardware security. Through experimentation, we verify that our benchmarks offers more structural variation than the current benchmark suites.more » « less
An official website of the United States government

Full Text Available