skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2016662

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 11, 2026
  2. Free, publicly-accessible full text available June 8, 2026
  3. Free, publicly-accessible full text available June 8, 2026
  4. Process technology scaling and hardware architecture specialization have vastly increased the need for chip design space exploration, while optimizing for power, performance, and area. Hammer is an open-source, reusable physical design (PD) flow generator that reduces design effort and increases portability by enforcing a separation among design-, tool-, and process technology-specific concerns with a modular software architecture. In this work, we outline Hammer’s structure and highlight recent extensions that support both physical chip designers and hardware architects evaluating the merit and feasibility of their proposed designs. This is accomplished through the integration of more tools and process technologies—some open-source—and the designer-driven development of flow step generators. An evaluation of chip designs in process technologies ranging from 130nm down to 12nm across a series of RISC-V-based chips shows how Hammer-generated flows are reusable and enable efficient optimization for diverse applications. 
    more » « less