skip to main content

Title: Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish
Authors:
; ;
Award ID(s):
2017789 2021693 2020888
Publication Date:
NSF-PAR ID:
10219948
Journal Name:
Renewable and Sustainable Energy Reviews
Volume:
143
Issue:
C
Page Range or eLocation-ID:
110885
ISSN:
1364-0321
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Floating offshore wind turbines hold great potential for future solutions to the growing demand for renewable energy production. Thereafter, the prediction of the offshore wind power generation became critical in locating and designing wind farms and turbines. The purpose of this research is to improve the prediction of the offshore wind power generation by the prediction of local wind speed using a Deep Learning technique. In this paper, the future local wind speed is predicted based on the historical weather data collected from National Oceanic and Atmospheric Administration. Then, the prediction of the wind power generation is performed using the traditional methods using the future wind speed data predicted using Deep Learning. The network layers are designed using both Long Short-Term Memory (LSTM) and Bi-directional LSTM (BLSTM), known to be effective on capturing long-term time-dependency. The selected networks are fine-tuned, trained using a part of the weather data, and tested using the other part of the data. To evaluate the performance of the networks, a parameter study has been performed to find the relationships among: length of the training data, prediction accuracy, and length of the future prediction that is reliable given desired prediction accuracy and the training size.

  2. Abstract

    High-resolution simulations are conducted with the Weather Research and Forecasting Model to evaluate the sensitivity of wake effects and power production from two wind farm parameterizations [the commonly used Fitch scheme and the more recently developed Explicit Wake Parameterization (EWP)] to the resolution at which the model is applied. The simulations are conducted for a 9-month period for a domain encompassing much of the U.S. Midwest. The two horizontal resolutions considered are 4 km × 4 km and 2 km × 2 km grid cells, and the two vertical discretizations employ either 41 or 57 vertical layers (with the latter having double the number in the lowest 1 km). Higher wind speeds are observed close to the wind turbine hub height when a larger number of vertical layers are employed (12 in the lowest 200 m vs 6), which contributes to higher power production from both wind farm schemes. Differences in gross capacity factors for wind turbine power production from the two wind farm parameterizations and with resolution are most strongly manifest under stable conditions (i.e., at night). The spatial extent of wind farm wakes when defined as the area affected by velocity deficits near to wind turbine hubmore »heights in excess of 2% of the simulation without wind turbines is considerably larger in simulations with the Fitch scheme. This spatial extent is generally reduced by increasing the horizontal resolution and/or increasing the number of vertical levels. These results have important applications to projections of expected annual energy production from new wind turbine arrays constructed in the wind shadow from existing wind farms.

    « less