skip to main content

Search for: All records

Award ID contains: 2038625

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Automated particle segmentation and feature analysis of experimental image data are indispensable for data-driven material science. Deep learning-based image segmentation algorithms are promising techniques to achieve this goal but are challenging to use due to the acquisition of a large number of training images. In the present work, synthetic images are applied, resembling the experimental images in terms of geometrical and visual features, to train the state-of-art Mask region-based convolutional neural networks to segment vanadium pentoxide nanowires, a cathode material within optical density-based images acquired using spectromicroscopy. The results demonstrate the instance segmentation power in real optical intensity-based spectromicroscopy images of complex nanowires in overlapped networks and provide reliable statistical information. The model can further be used to segment nanowires in scanning electron microscopy images, which are fundamentally different from the training dataset known to the model. The proposed methodology can be extended to any optical intensity-based images of variable particle morphology, material class, and beyond.

    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available September 26, 2024
  4. The continuous growth of CNN complexity not only intensifies the need for hardware acceleration but also presents a huge challenge. That is, the solution space for CNN hardware design and dataflow mapping becomes enormously large besides the fact that it is discrete and lacks a well behaved structure. Most previous works either are stochastic metaheuristics, such as genetic algorithm, which are typically very slow for solving large problems, or rely on expensive sampling, e.g., Gumbel Softmax-based differentiable optimization and Bayesian optimization. We propose an analytical model for evaluating power and performance of CNN hardware design and dataflow solutions. Based on this model, we introduce a co-optimization method consisting of nonlinear programming and parallel local search. A key innovation in this model is its matrix form, which enables the use of deep learning toolkit for highly efficient computations of power/performance values and gradients in the optimization. In handling power-performance tradeoff, our method can lead to better solutions than minimizing a weighted sum of power and latency. The average relative error of our model compared with Timeloop is as small as 1%. Compared to state-of-the-art methods, our approach achieves solutions with up to 1.7 × shorter inference latency, 37.5% less power consumption, and 3 × less area on ResNet 18. Moreover, it provides a 6.2 × speedup of optimization 
    more » « less
  5. Jadbabaie, Ali ; Lygeros, John ; Pappas, George J. ; Parrilo, Pablo ; Recht, Benjamin ; Scaramuzza, Davide ; Tomlin, Claire J. ; Zeilinger, Melanie N. (Ed.)