skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Curvature-based Analysis of Network Connectivity in Private Backbone Infrastructures
The main premise of this work is that since large cloud providers can and do manipulate probe packets that traverse their privately owned and operated backbones, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in large cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating private connectivity in today's Internet. Our approach relies on using only "light-weight" ( i.e., simple, easily-interpretable, and readily available) measurements, but requires applying a "heavy-weight" or advanced mathematical analysis. In particular, we describe a new method for assessing the characteristics of network path connectivity that is based on concepts from Riemannian geometry ( i.e., Ricci curvature) and also relies on an array of carefully crafted visualizations ( e.g., a novel manifold view of a network's delay space). We demonstrate our method by utilizing latency measurements from RIPE Atlas anchors and virtual machines running in data centers of three large cloud providers to (i) study different aspects of connectivity in their private backbones and (ii) show how our manifold-based view enables us to expose and visualize critical aspects of this connectivity over different geographic scales.  more » « less
Award ID(s):
2106517 1703592 2039146
PAR ID:
10423521
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As hyperscalers such as Google, Microsoft, and Amazon play an increasingly important role in today's Internet, they are also capable of manipulating probe packets that traverse their privately owned and operated backbones. As a result, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in these global-scale cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating connectivity in these private backbone networks. Our approach relies on using only lightweight (i.e., simple, easily interpretable, and readily available) measurements, but requires applying heavyweight mathematical techniques for analyzing these measurements. In particular, we describe a new method that uses network latency measurements and relies on concepts from Riemannian geometry (i.e., Ricci curvature) to assess the characteristics of the connectivity fabric of a given network infrastructure. We complement this method with a visualization tool that generates a novel manifold view of a network's delay space. We demonstrate our approach by utilizing latency measurements from available vantage points and virtual machines running in datacenters of three large cloud providers to study different aspects of connectivity in their private backbones and show how our generated manifold views enable us to expose and visualize critical aspects of this connectivity. 
    more » « less
  2. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less
  3. null (Ed.)
    The success of supervised learning requires large-scale ground truth labels which are very expensive, time- consuming, or may need special skills to annotate. To address this issue, many self- or un-supervised methods are developed. Unlike most existing self-supervised methods to learn only 2D image features or only 3D point cloud features, this paper presents a novel and effective self-supervised learning approach to jointly learn both 2D image features and 3D point cloud features by exploiting cross-modality and cross-view correspondences without using any human annotated labels. Specifically, 2D image features of rendered images from different views are extracted by a 2D convolutional neural network, and 3D point cloud features are extracted by a graph convolution neural network. Two types of features are fed into a two-layer fully connected neural network to estimate the cross-modality correspondence. The three networks are jointly trained (i.e. cross-modality) by verifying whether two sampled data of different modalities belong to the same object, meanwhile, the 2D convolutional neural network is additionally optimized through minimizing intra-object distance while maximizing inter-object distance of rendered images in different views (i.e. cross-view). The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks including multi-view 2D shape recognition, 3D shape recognition, multi-view 2D shape retrieval, 3D shape retrieval, and 3D part-segmentation. Extensive evaluations on all the five different tasks across different datasets demonstrate strong generalization and effectiveness of the learned 2D and 3D features by the proposed self-supervised method. 
    more » « less
  4. Climate change is a pressing threat to planetary well-being that can be addressed only by rapid near-term actions across all sectors. Yet, the cloud computing sector, with its increasingly large carbon footprint, has initiated only modest efforts to reduce emissions to date; its main approach today relies on cloud providers sourcing renewable energy from a limited global pool of options. We investigate how to accelerate cloud computing's efforts. Our approach tackles carbon reduction from a software standpoint by gradually integrating carbon awareness into the cloud abstraction. Specifically, we identify key bottlenecks to software-driven cloud carbon reduction, including (1) the lack of visibility and disaggregated control between cloud providers and users over infrastructure and applications, (2) the immense overhead presently incurred by application developers to implement carbon-aware application optimizations, and (3) the increasing complexity of carbon-aware resource management due to renewable energy variability and growing hardware heterogeneity. To overcome these barriers, we propose an agile approach that federates the responsibility and tools to achieve carbon awareness across different cloud stakeholders. As a key first step, we advocate leveraging the role of application operators in managing large-scale cloud deployments and integrating carbon efficiency metrics into their cloud usage workflow. We discuss various techniques to help operators reduce carbon emissions, such as carbon budgets, service-level visibility into emissions, and configurable-yet-centralized resource management optimizations. 
    more » « less
  5. Kubernetes, an open-source container orchestration platform, has been widely adopted by cloud service providers (CSPs) for its advantages in simplifying container deployment, scalability and scheduling. Networking is one of the central components of Kubernetes, providing connectivity between different pods (group of containers) both within the same host and across hosts. To bootstrap Kubernetes networking, the Container Network Interface (CNI) provides a unified interface for the interaction between container runtimes. There are several CNI implementations, available as open-source ‘CNI plugins’. While they differ in functionality and performance, it is a challenge for a cloud provider to differentiate and choose the appropriate plugin for their environment. In this paper, we compare the various open source CNI plugins available from the community, qualitatively and through detailed quantitative measurements. With our experimental evaluation, we analyze the overheads and bottlenecks for each CNI plugin, as a result of the network model it implements, interaction with the host network protocol stack and the network policies implemented in iptables rules. The choice of the CNI plugin may also be based on whether intra-host or inter-host communication dominates. 
    more » « less