skip to main content


Title: Curvature-based Analysis of Network Connectivity in Private Backbone Infrastructures
The main premise of this work is that since large cloud providers can and do manipulate probe packets that traverse their privately owned and operated backbones, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in large cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating private connectivity in today's Internet. Our approach relies on using only "light-weight" ( i.e., simple, easily-interpretable, and readily available) measurements, but requires applying a "heavy-weight" or advanced mathematical analysis. In particular, we describe a new method for assessing the characteristics of network path connectivity that is based on concepts from Riemannian geometry ( i.e., Ricci curvature) and also relies on an array of carefully crafted visualizations ( e.g., a novel manifold view of a network's delay space). We demonstrate our method by utilizing latency measurements from RIPE Atlas anchors and virtual machines running in data centers of three large cloud providers to (i) study different aspects of connectivity in their private backbones and (ii) show how our manifold-based view enables us to expose and visualize critical aspects of this connectivity over different geographic scales.  more » « less
Award ID(s):
2106517 1703592 2039146
NSF-PAR ID:
10423521
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
6
Issue:
1
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As hyperscalers such as Google, Microsoft, and Amazon play an increasingly important role in today's Internet, they are also capable of manipulating probe packets that traverse their privately owned and operated backbones. As a result, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in these global-scale cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating connectivity in these private backbone networks. Our approach relies on using only lightweight (i.e., simple, easily interpretable, and readily available) measurements, but requires applying heavyweight mathematical techniques for analyzing these measurements. In particular, we describe a new method that uses network latency measurements and relies on concepts from Riemannian geometry (i.e., Ricci curvature) to assess the characteristics of the connectivity fabric of a given network infrastructure. We complement this method with a visualization tool that generates a novel manifold view of a network's delay space. We demonstrate our approach by utilizing latency measurements from available vantage points and virtual machines running in datacenters of three large cloud providers to study different aspects of connectivity in their private backbones and show how our generated manifold views enable us to expose and visualize critical aspects of this connectivity.

     
    more » « less
  2. Introduction

    Big graphs like social network user interactions and customer rating matrices require significant computing resources to maintain. Data owners are now using public cloud resources for storage and computing elasticity. However, existing solutions do not fully address the privacy and ownership protection needs of the key involved parties: data contributors and the data owner who collects data from contributors.

    Methods

    We propose a Trusted Execution Environment (TEE) based solution: TEE-Graph for graph spectral analysis of outsourced graphs in the cloud. TEEs are new CPU features that can enable much more efficient confidential computing solutions than traditional software-based cryptographic ones. Our approach has several unique contributions compared to existing confidential graph analysis approaches. (1) It utilizes the unique TEE properties to ensure contributors' new privacy needs, e.g., the right of revocation for shared data. (2) It implements efficient access-pattern protection with a differentially private data encoding method. And (3) it implements TEE-based special analysis algorithms: the Lanczos method and the Nystrom method for efficiently handling big graphs and protecting confidentiality from compromised cloud providers.

    Results

    The TEE-Graph approach is much more efficient than software crypto approaches and also immune to access-pattern-based attacks. Compared with the best-known software crypto approach for graph spectral analysis, PrivateGraph, we have seen that TEE-Graph has 103−105times lower computation, storage, and communication costs. Furthermore, the proposed access-pattern protection method incurs only about 10%-25% of the overall computation cost.

    Discussion

    Our experimentation showed that TEE-Graph performs significantly better and has lower costs than typical software approaches. It also addresses the unique ownership and access-pattern issues that other TEE-related graph analytics approaches have not sufficiently studied. The proposed approach can be extended to other graph analytics problems with strong ownership and access-pattern protection.

     
    more » « less
  3. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less
  4. Abstract

    In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml‐jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml‐jICA) that allows for a more balanced weight distribution over ml‐jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml‐jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.

     
    more » « less
  5. Kubernetes, an open-source container orchestration platform, has been widely adopted by cloud service providers (CSPs) for its advantages in simplifying container deployment, scalability and scheduling. Networking is one of the central components of Kubernetes, providing connectivity between different pods (group of containers) both within the same host and across hosts. To bootstrap Kubernetes networking, the Container Network Interface (CNI) provides a unified interface for the interaction between container runtimes. There are several CNI implementations, available as open-source ‘CNI plugins’. While they differ in functionality and performance, it is a challenge for a cloud provider to differentiate and choose the appropriate plugin for their environment. In this paper, we compare the various open source CNI plugins available from the community, qualitatively and through detailed quantitative measurements. With our experimental evaluation, we analyze the overheads and bottlenecks for each CNI plugin, as a result of the network model it implements, interaction with the host network protocol stack and the network policies implemented in iptables rules. The choice of the CNI plugin may also be based on whether intra-host or inter-host communication dominates. 
    more » « less