skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2042029

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The purpose of this study was to develop a replicable methodology for testing the capabilities and characteristics of a wind turbine blade in a structural re-use application with the specific goal of creating and demonstrating an efficient and commercially viable wind blade pedestrian bridge design. Wind energy experienced a dramatic increase in popularity following the turn of the century and it is now a common source of renewable energy around the world. However, while wind turbines are able to produce clean energy while in service, turbine blades are designed for a fatigue life of only about 20 years. With the difficulty and costs associated with recycling the composite material blades used on the turbines, wind power companies choose to dispose of decommissioned blades in landfills instead. The Re-Wind BladeBridge project aims to promote a more sustainable life cycle for wind power by demonstrating that decommissioned wind turbine blades have the capability to be repurposed as structural elements in bridges. This paper presents an analysis and characterization of a LM 13.4 wind blade from a Nordex N29 turbine, along with a design for a pedestrian bridge using two LM 13.4 wind blades to create a 5-meter span bridge. Software developed by the Re-Wind team called “BladeMachine” was used to generate the engineering properties of the blade at multiple sections along the blade length. Resin burnout tests and mechanical testing in tension and compression were performed to determine the material and mechanical properties of the composite materials in the blade. Additionally, a four-point edgewise bending test was performed on a 4-meter section of the wind blade to evaluate its load carrying behavior. The results of these tests revealed that the LM 13.4 blades are suitable to be re-utilized as girders for a short-span pedestrian bridge. An overview of the design of the BladeBridge currently under construction in County Cork, Ireland is presented, including details on the architectural and structural design processes. 
    more » « less
  2. The first generation of wind turbines are being retired, and a tremendous number of wind tur-bine blades are coming out of service. Architects and engineers are developing re-use ideas for these blades and are wrestling with their complex geometries and materiality. This paper details a four-phase process for reconstructing the geometry of wind turbine blades, starting from a point-cloud scan and finishing with a digital model that represents the blade and its associated properties. The process builds on earlier work that created an airfoil database to store the nor-malized coordinates of publicly available airfoil profiles. This profile database is traversed to match airfoil shapes to cross-sections found in the point-cloud. Root, transition, and airfoil shapes are matched to cross-sections along the full blade to reconstruct the outer geometry. Based on data from the interior of the blade, the structural spar box is reconstructed. The addi-tion of thickness and material property data allows for calculation of section properties at multi-ple stations along the blade. The resulting 3D geometry and the associated data is used for ar-chitectural design and engineering calculations to develop second-life applications for wind blades. The paper demonstrates the workflow through examples from a GE 37-meter blade and an LM 13.4-meter blade. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)