The magnetic anisotropy of strontium ferrite (SF)/PA12 filament, a popular hard magnetic ferrimagnetic composites that is used for 3D-printing of permanent magnets, is studied by vibrating sample magnetometry. The studied filaments have a composition of SF/PA-12 thermoplastic composite with a 40% wt. ratio of SF. SF particles are non-spherical platelets with an average diameter of 1.3 um and a diameter to thickness ratio of 3. Filaments are produced by a twin-screw extruder and have a diameter of 1.5 mm. SEM images show that the SF particles are homogeneously distributed through the filament. VSM measurements on different parts of the filaments show that the outer part of the cylindrical filament has a higher anisotropy, and the core is mostly isotropic. This conclusion is consistent with computational work by others which suggest that particle alignment predominantly takes place near the walls of the extruder die where shear flow is maximum. Additional hysteresis curve measurement of the outer cylindrical part of the filament parallel to the r and ϕ directions indicates that the squareness of the hysteresis curve (S) is larger in the r-direction. This indicates that the outer surface of the filament has a strong easy axis in the r-direction. We conclude that the SF platelets line up parallel to the walls of the extrusion die.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Magnetic Field Assisted Additive Manufacturing (MFAAM) enables 3D printing of magnetic materials of various shapes which exhibit a complex anisotropy energy surface containing contributions generated from different origins such as sample, particle, and agglomerate shape anisotropy, flow and field induced anisotropy, and particle crystal anisotropy. These novel magnet shapes require the need to measure the x, y, and z components of the magnetic dipole moment simultaneously to fully understand the magnetic reversal mechanism and unravel the complex magnetic anisotropy energy surface of 3D printed magnetic composites. This work aims to develop a triaxial vibrating sample magnetometer (VSM) by adding a z-coil set to a pre-existing biaxial VSM employing a modified Mallison coil set. The optimum size and location of the sensing coils were determined by modeling the sensitivity matrix of the z-coil set. The designed coil set was implemented using 3D printed spools, a manual coil winder, and gauge 38 copper wire. A 3D printed strontium ferrite nylon composite sample was used to estimate the sensitivity of the z-coils (50 mV/emu). The results herein are applicable for any VSM using a modified Mallison biaxial coil configuration allowing for a quick implementation on pre-existing systems.
-
To better understand Magnetic Field Assisted Additive Manufacturing (MFAAM) the effect of a magnetic field on the orientation and distribution of magnetic particles in a molten magnetic composite was studied. Vibrating Sample Magnetometer (VSM) measurements were made on Sr-ferrite/PA12 fused deposition modeling filaments of different packing fraction (5 and 40 wt. %). The rotation of the sample’s magnetic moment upon application of a field perpendicular to the easy axis was monitored with a biaxial VSM above the PA12’s softening temperature. The observed magnetic moment transients depend on the temperature, the applied alignment field, the packing fraction, and the initial field-anneal procedure. Longer field-anneals result in larger time constants and seem to induce a hurdle that prevents complete alignment at low temperatures and/or for small fields. Results indicate the molten composite is a non-Newtonian fluid that can support a yielding stress. Scanning Electron microscopy (SEM) images taken on field-annealed samples at 230 °C show strong chaining with little PA-12 left between individual Sr-ferrite particles suggesting that direct particle to particle interaction is the reason for the observed non-zero yielding stress. The melt viscosity of the composite increases with the number of thermal cycles above the melting temperature (T m ). Room temperature (RT) torque magnetometry measurements show that magnetic anisotropy depends on the field annealing process through induced shape anisotropy contributions originating from magnetic particle agglomerates.more » « less
-
Piezoresistive structures inspired by serpentines, auxetic, and kirigami arrangements have demonstrated good flexibility and sensitivity under tension. Piezoresistive structures display optimal performance when the characteristics entail reliable stretchability and repeatability. These structures can be implemented as wearable sensors by compressing and elongating the conductive nanocomposites to vary the flow of electrons and to provide resistance change. To guarantee the reliability of these structures for strain sensing, it is important that the resistance change in these structures remains constant under repeated loads. In this study, the performance of different piezoresistive structures under cyclic tensile load is investigated and compared. Based on the performance of different types of structures, novel hybrid structures have been also proposed to design for both high stretchability and sensitivity of piezoresistive sensors. All the structures were tested with position limits rather than a fixed force to avoid permanent deformation. First, small position limits were used to determine Young’s Modulus, then a 10-cycle tensile test with larger position limits was used to further study the electromechanical behavior of different piezoresistive structures under larger deformation and repetition. Finally, the gage factor was derived for all the studied structures, and they were re-categorized based on properties’ similarities.more » « less