skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104167

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a combined experimental and density functional theory study that characterizes the charge and spin density in NiX2(3,5-lutidine)4(X= Cl, Br and I). In this material, magnetic exchange interactions occur via Ni2+–halide...halide–Ni2+pathways, forming one-dimensional chains. We find evidence for weak halide...halide covalency in the iodine system, which is greatly reduced whenX= Br and is absent forX= Cl; this is consistent with the reported `switching-on' of magnetic exchange in the larger-halide cases. Our results are benchmarked against density functional theory calculations on [NiHF2(pyrazine)2]SbF6, in which the primary magnetic exchange is mediated by F–H–F bridging ligands. This comparison indicates that, despite the largely depleted charge density found at the centre of halide...halide bonds, these through-space interactions can support strong magnetic exchange gated by weak covalency and enhanced by significant electron density overlapping that of the transition metal centres. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Materials composed of spin-1 antiferromagnetic (AFM) chains are known to adopt complex ground states that are sensitive to the single-ion-anisotropy (SIA) energy ( D ), and intrachain ( J 0 ) and interchain ( J 1 , 2 ) exchange energy scales. While theoretical and experimental studies have extended this model to include various other energy scales, the effect of the lack of a common SIA axis is not well explored. Here we investigate the magnetic properties of Ni ( pyrimidine ) ( H 2 O ) 2 ( NO 3 ) 2 , a chain compound where the tilting of Ni octahedra leads to a twofold alternation of the easy-axis directions along the chain. Muon-spin relaxation measurements indicate a transition to long-range order at T N = 2.3 K and the magnetic structure is initially determined to be antiferromagnetic and collinear using elastic neutron diffraction experiments. Inelastic neutron scattering measurements were used to find J 0 = 5.107 ( 7 ) K ,   D = 2.79 ( 1 ) K , J 1 = 0.00 ( 5 ) K ,   J 2 = 0.18 ( 3 ) K , and a rhombic anisotropy energy E = 0.19 ( 9 ) K . Mean-field modeling reveals that the ground state structure hosts spin canting of ϕ 6 . 5 , which is not detectable above the noise floor of the elastic neutron diffraction data. Monte Carlo simulation of the powder-averaged magnetization, M ( H ) , is then used to confirm these Hamiltonian parameters, while single-crystal M ( H ) simulations provide insight into features observed in the data. Published by the American Physical Society2025 
    more » « less
  3. We investigate the magnetic properties of S = 1 antiferromagnetic diamond-lattice, Ni X 2 ( pyrimidine ) 2 ( X = Cl ,   Br ) , hosting a single-ion anisotropy (SIA) orientation which alternates between neighboring sites. Through neutron diffraction measurements of the X = Cl compound, the ordered state spins are found to align collinearly along a pseudo-easy axis, a unique direction created by the intersection of two easy planes. Similarities in the magnetization, exhibiting spin-flop transitions, and the magnetic susceptibility in the two compounds imply that the same magnetic structure and a pseudo-easy axis is also present for X = Br . We estimate the Hamiltonian parameters by combining analytical calculations and Monte Carlo (MC) simulations of the spin-flop and saturation field. The MC simulations also reveal that the spin-flop transition occurs when the applied field is parallel to the pseudo-easy axis. Contrary to conventional easy-axis systems, there exist field directions perpendicular to the pseudo-easy axis for which the magnetic saturation is approached asymptotically and no symmetry-breaking phase transition is observed at finite fields. Published by the American Physical Society2024 
    more » « less
  4. Kancharla, S (Ed.)
    We present the magnetic and structural properties of [Cu(pyrazine)0.5(glycine)]ClO4 under applied pressure. As previously reported, at ambient pressure this material consists of quasi-two-dimensional layers of weakly coupled antiferromagnetic dimers which undergo Bose-Einstein condensation of triplet excitations between two magnetic field-induced quantum critical points (QCPs). The molecular building blocks from which the compound is constructed give rise to exchange strengths that are considerably lower than those found in other S = 1/2 dimer materials, which allows us to determine the pressure evolution of the entire field-temperature magnetic phase diagram using radio-frequency magnetometry. We find that a distinct phase emerges above the upper field-induced transition at elevated pressures and also show that an additional QCP is induced at zero field at a critical pressure of pc = 15.7(5) kbar. Pressure-dependent single-crystal x-ray diffraction and density functional theory calculations indicate that this QCP arises primarily from a dimensional crossover driven by an increase in the interdimer interactions between the planes. While the effect of quantum fluctuations on the lower field-induced transition is enhanced with applied pressure, quantum Monte Carlo calculations suggest that this alone cannot explain an unconventional asymmetry that develops in the phase diagram. 
    more » « less