skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 16, 2025

Title: Convective and Orographic Origins of the Mesoscale Kinetic Energy Spectrum
Abstract The mesoscale spectrum describes the distribution of kinetic energy in the Earth's atmosphere between length scales of 10 and 400 km. Since the first observations, the origins of this spectrum have been controversial. At synoptic scales, the spectrum follows a −3 spectral slope, consistent with two‐dimensional turbulence theory, but a shallower −5/3 slope was observed at the shorter mesoscales. The cause of the shallower slope remains obscure, illustrating our lack of understanding. Through a novel coarse‐graining methodology, we are able to present a spatio‐temporal climatology of the spectral slope. We find convection and orography have a shallowing effect and can quantify this using “conditioned spectra.” These are typical spectra for a meteorological condition, obtained by aggregating spectra where the condition holds. This allows the investigation of new relationships, such as that between energy flux and spectral slope. Potential future applications of our methodology include predictability research and model validation.  more » « less
Award ID(s):
2123496 2206380
PAR ID:
10596381
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Geophysical Research Letters
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
21
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We analysed line-of-sight magnetic fields and magnetic power spectra of an undisturbed photosphere using magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamic Observatory and the Near InfraRed Imaging Spectrapolarimeter (NIRIS) operating at the Goode Solar Telescope of the Big Bear Solar Observatory. In the NIRIS data, we revealed thin flux tubes of 200–400 km in diameter and of 1000–2000 G field strength. The HMI power spectra determined for a coronal hole, a quiet sun, and a plage areas exhibit the same spectral index of −1 on a broad range of spatial scales from 10–20 Mm down to 2.4 Mm. This implies that the same mechanism(s) of magnetic field generation operate everywhere in the undisturbed photosphere. The most plausible one is the local turbulent dynamo. When compared to the HMI spectra, the −1.2 slope of the NIRIS spectrum appears to be more extended into the short spatial range until the cut-off at 0.8–0.9 Mm, after which it continues with a steeper slope of −2.2. Comparison of the observed and Kolmogorov-type spectra allowed us to infer that the Kolmogorov turbulent cascade cannot account for more than 35 per cent of the total magnetic energy observed in the scale range of 3.5–0.3 Mm. The energy excess can be attributed to other mechanisms of field generation such as the local turbulent dynamo and magnetic superdiffusivity observed in an undisturbed photosphere that can slow down the rate of the Kolmogorov cascade leading to a shallower resulting spectrum. 
    more » « less
  2. Here we present a new theoretical framework that connects the error growth behavior in numerical weather prediction (NWP) with the atmospheric kinetic energy spectrum. Building on previous studies, our newly proposed framework applies to the canonical observed atmospheric spectrum that has a -3 slope at synoptic scales and a -5/3 slope at smaller scales. Based on this realistic hybrid energy spectrum, our new experiment using hybrid numerical models provides reasonable estimations for the finite predictable ranges at different scales. We further derive an analytical equation that helps understand the error growth behavior. Despite its simplicity, this new analytical error growth equation is capable of capturing the results of previous comprehensive theoretical and observational studies of atmospheric predictability. The success of this new theoretical framework highlights the combined effects of quasi-two-dimensional dynamics at synoptic-scales (-3 slope) and three-dimensional turbulence-like small-scale chaotic flows (-5/3 slope) in dictating the error growth. It is proposed that this new framework could serve as a guide for understanding and estimating the predictability limit in the real world. 
    more » « less
  3. Abstract We present the first results of JWST Cycle 1 and 2 observations of Sgr A* using NIRCam taken simultaneously at 2.1 and 4.8μm for a total of ∼48 hr over seven different epochs in 2023 and 2024. We find correlated variability at 2.1 and 4.8μm in all epochs, continual short-timescale (a few seconds) variability, and epoch-to-epoch variable emission implying long-term (∼days to months) variability of Sgr A*. A highlight of this analysis is the evidence for subminute, horizon-scale time variability of Sgr A*, probing inner accretion disk size scales. The power spectra of the light curves in each observing epoch also indicate long-term variable emission. With continuous observations, JWST data suggest that the flux of Sgr A* is fluctuating constantly. The flux density correlation exhibits a distinct break in the slope at ∼3 mJy at 2.1μm. The analysis indicates two different processes contributing to the variability of Sgr A*. Brighter emission trends toward shallower spectral indices than the fainter emission. Cross-correlation of the light curves indicates for the first time a time delay of 3–40 s in the 4.8μm variability with respect to 2.1μm. This phase shift leads to loops in plots of flux density versus spectral index as the emission rises and falls. Modeling suggests that the synchrotron emission from the evolving, age-stratified electron population reproduces the shape of the observed light curves with a direct estimate of the magnetic field strengths in the range between 40 and 90 G and an upper cutoff energy,Ec, between 420 and 720 MeV. 
    more » « less
  4. We expand on the method of sequential filtering for calculating the spectra of inhomogeneous fields. Sadek and Aluie [Phys. Rev. Fluids 3, 124610 (2018)] showed that the filtering kernel has to have at least p vanishing moments to extract a power-law spectrum k−α with α<p+2 by low-pass filtering. Here, we show that sequential high-pass filtering allows for extracting steeper spectra with α<2p+3 using the same pth order kernel. For example, the spectrum of a field that is shallower than k−5 can be extracted by sequential high-pass filtering the field using any first-order kernel such as a Gaussian or top-hat. Finally, we demonstrate how the second-order structure function fails to capture spectral peaks because it cannot detect scaling that is too shallow. 
    more » « less
  5. ABSTRACT The coupling state between ions and neutrals in the interstellar medium plays a key role in the dynamics of magnetohydrodynamic (MHD) turbulence, but is challenging to study numerically. In this work, we investigate the damping of MHD turbulence in a partially ionized medium using 3D two-fluid (ions + neutrals) simulations generated with the athenak code. Specifically, we examine the velocity, density, and magnetic field statistics of the two-fluid MHD turbulence in different regimes of neutral-ion coupling. Our results demonstrate that when ions and neutrals are strongly coupled, the velocity statistics resemble those of single-fluid MHD turbulence. Both the velocity structures and kinetic energy spectra of ions and neutrals are similar, while their density structures can be significantly different. With an excess of small-scale sharp density fluctuations in ions, the density spectrum in ions is shallower than that of neutrals. When ions and neutrals are weakly coupled, the turbulence in ions is more severely damped due to the ion-neutral collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum and density spectrum in ions compared to the Kolmogorov spectrum. We also find that the magnetic energy spectrum basically follows the shape of the kinetic energy spectrum of ions, irrespective of the coupling regime. In addition, we find large density fluctuations in ions and neutrals and thus spatially inhomogeneous ionization fractions. As a result, the neutral-ion decoupling and damping of MHD turbulence take place over a range of length-scales. 
    more » « less