Legged robots have shown remarkable advantages in navigating uneven terrain. However, realizing effective loco-motion and manipulation tasks on quadruped robots is still challenging. In addition, object and terrain parameters are generally unknown to the robot in these problems. Therefore, this paper proposes a hierarchical adaptive control framework that enables legged robots to perform loco-manipulation tasks without any given assumption on the object's mass, the friction coefficient, or the slope of the terrain. In our approach, we first present an adaptive manipulation control to regulate the contact force to manipulate an unknown object on unknown terrain. We then introduce a unified model predictive control (MPC) for loco-manipulation that takes into account the manipulation force in our robot dynamics. The proposed MPC framework thus can effectively regulate the interaction force between the robot and the object while keeping the robot balance. Experimental validation of our proposed approach is successfully conducted on a Unitree A1 robot, allowing it to manipulate an unknown time-varying load up to 7 kg (60% of the robot's weight). Moreover, our framework enables fast adaptation to unknown slopes or different surfaces with different friction coefficients.
more »
« less
Adaptive-Force-Based Control of Dynamic Legged Locomotion Over Uneven Terrain
Agile-legged robots have proven to be highly effective in navigating and performing tasks in complex and challenging environments, including disaster zones and industrial settings. However, these applications commonly require the capability of carrying heavy loads while maintaining dynamic motion. Therefore, this article presents a novel methodology for incorporating adaptive control into a force-based control system. Recent advancements in the control of quadruped robots show that force control can effectively realize dynamic locomotion over rough terrain. By integrating adaptive control into the force-based controller, our proposed approach can maintain the advantages of the baseline framework while adapting to significant model uncertainties and unknown terrain impact models. Experimental validation was successfully conducted on the Unitree A1 robot. With our approach, the robot can carry heavy loads (up to 50% of its weight) while performing dynamic gaits such as fast trotting and bounding across uneven terrains.
more »
« less
- Award ID(s):
- 2133091
- PAR ID:
- 10534276
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Robotics
- Volume:
- 40
- ISSN:
- 1552-3098
- Page Range / eLocation ID:
- 2462 to 2477
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hierarchical Adaptive Control for Collaborative Manipulation of a Rigid Object by Quadrupedal RobotsDespite the potential benefits of collaborative robots, effective manipulation tasks with quadruped robots remain difficult to realize. In this paper, we propose a hierarchical control system that can handle real-world collaborative manipulation tasks, including uncertainties arising from object properties, shape, and terrain. Our approach consists of three levels of controllers. Firstly, an adaptive controller computes the required force and moment for object manipulation without prior knowledge of the object's properties and terrain. The computed force and moment are then optimally distributed between the team of quadruped robots using a Quadratic Programming (QP)-based controller. This QP-based controller optimizes each robot's contact point location with the object while satisfying constraints associated with robot-object contact. Finally, a decentralized loco-manipulation controller is designed for each robot to apply manipulation force while maintaining the robot's stability. We successfully validated our approach in a high-fidelity simulation environment where a team of quadruped robots manipulated an unknown object weighing up to 18 kg on different terrains while following the desired trajectory.more » « less
-
: Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy.more » « less
-
Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.more » « less
-
Abstract Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles.more » « less
An official website of the United States government

