skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Part fingerprinting-based productivity monitoring of CNC machines with low-cost current sensors
Abstract Digital transformation of manufacturing industry, Smart Manufacturing, leverages continuous measurement of machines on the shop floor to make effective decisions and improve productivity metrics such as machine uptime and overall equipment efficiency (OEE). However, despite the declining sensor cost, the initial financial and technological skill requirements of digital transformation pose significant barriers for the overwhelming majority (90%) of the manufacturers who are classed as small and medium enterprises (SMEs). To lower this barrier, here we demonstrate an inexpensive (~ $40 per machine), data-efficient solution that extracts part-level productivity metrics of a CNC machine from its total current consumption alone. We introduce the concept of a part’s “fingerprint” and develop a set of methods that allows one to extract the fingerprints and utilize them to monitor each individual manufactured part and their cycle times. Testing on actual production data of over 3 three months in a part-counting task, the algorithms show a good match (96.2% overall accuracy) with manually logged production data is achieved. The presented fingerprint framework is general: it can be extended to multi-sensors, and multi-modal analytics. We expect that such a simple, yet cost-effective, solution will be accessible for a wide range of discrete manufacturers, facilitating the beginning of their digital transformation journey.  more » « less
Award ID(s):
2134667
PAR ID:
10632342
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
The International Journal of Advanced Manufacturing Technology
Volume:
137
Issue:
11-12
ISSN:
0268-3768
Page Range / eLocation ID:
5913 to 5926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas. 
    more » « less
  2. This study presents an overview and a few case studies to explicate the transformative power of diverse imaging techniques for smart manufacturing, focusing largely on variousin-situandex-situimaging methods for monitoring fusion-based metal additive manufacturing (AM) processes such as directed energy deposition (DED), selective laser melting (SLM), electron beam melting (EBM).In-situimaging techniques, encompassing high-speed cameras, thermal cameras, and digital cameras, are becoming increasingly affordable, complementary, and are emerging as vital for real-time monitoring, enabling continuous assessment of build quality. For example, high-speed cameras capture dynamic laser-material interaction, swiftly detecting defects, while thermal cameras identify thermal distribution of the melt pool and potential anomalies. The data gathered fromin-situimaging are then utilized to extract pertinent features that facilitate effective control of process parameters, thereby optimizing the AM processes and minimizing defects. On the other hand,ex-situimaging techniques play a critical role in comprehensive component analysis. Scanning electron microscopy (SEM), optical microscopy, and 3D-profilometry enable detailed characterization of microstructural features, surface roughness, porosity, and dimensional accuracy. Employing a battery of Artificial Intelligence (AI) algorithms, information from diverse imaging and other multi-modal data sources can be fused, and thereby achieve a more comprehensive understanding of a manufacturing process. This integration enables informed decision-making for process optimization and quality assurance, as AI algorithms analyze the combined data to extract relevant insights and patterns. Ultimately, the power of imaging in additive manufacturing lies in its ability to deliver real-time monitoring, precise control, and comprehensive analysis, empowering manufacturers to achieve supreme levels of precision, reliability, and productivity in the production of components. 
    more » « less
  3. The amount of data that can be gathered from a machining process is often misunderstood, and even if these data are collected, they are frequently underutilized. Intelligent uses of data collected from a manufacturing operation can lead to increased productivity and lower costs. While some large-scale manufacturers have developed custom solutions for data collection from their machine tools, small- and medium-size enterprises need efficient and easily deployable methods for data collection and analysis. This paper presents three broad solutions to data collection from machine tools, all of which rely on the open-source and royalty-free MTConnect protocol: the first is a machine monitoring dashboard based on Microsoft Excel; the second is an open source solution using Python and MTConnect; and the third is a cloud-based system using Google Sheets. Time studies are performed on these systems to determine their capability to gather near real-time data from a machining process. 
    more » « less
  4. null (Ed.)
    The emergence and steady adoption of machine communication protocols like the MTConnect are steering the manufacturing sector towards greater machine interoperability, higher operational productivity, substantial cost savings with advanced decision-making capabilities at the shop-floor level. MTConnect GitHub repository and NIST Smart Manufacturing Systems (SMS) Test Bed are two major resources for collecting data from CNC machines. However, these tools would be insufficient and protractive in Modeling & Simulation (M&S) scenarios where spawning hundreds of MTConnect agents and thousands of adapters with real-time virtual machining is necessary for advancing research in the digital supply chain. This paper introduces a flexible simulator testbed of multiple MTConnect agents and adapters for simulating Levels 0 & 1 of the ISA-95 framework and help support R&D activities in complex multi-enterprise supply chain scenarios. To the best knowledge of the authors, there is no publicly accessible multi-enterprise MTConnect testbed yet. 
    more » « less
  5. Abstract The new wave of Industry 4.0 is transforming manufacturing factories into data-rich environments. This provides an unprecedented opportunity to feed large amounts of sensing data collected from the physical factory into the construction of digital twin (DT) in cyberspace. However, little has been done to fully utilize the DT technology to improve the smartness and autonomous levels of small and medium-sized manufacturing factories. Indeed, only a small fraction of small and medium-sized manufacturers (SMMs) has considered implementing DT technology. There is an urgent need to exploit the full potential of data analytics and simulation-enabled DTs for advanced manufacturing. Hence, this paper presents the design and development of DT models for simulation optimization of manufacturing process flows. First, we develop a multi-agent simulation model that describes nonlinear and stochastic dynamics among a network of interactive manufacturing things, including customers, machines, automated guided vehicles (AGVs), queues, and jobs. Second, we propose a statistical metamodeling approach to design sequential computer experiments to optimize the utilization of AGV under uncertainty. Third, we construct two new graph models—job flow graph and AGV traveling graph—to track and monitor the real-time performance of manufacturing jobshops. The proposed simulation-enabled DT approach is evaluated and validated with experimental studies for the representation of a real-world manufacturing factory. Experimental results show that the proposed methodology effectively transforms a manufacturing jobshop into a new generation of DT-enabled smart factories. The sequential design of experiments effectively reduces the computation overhead of expensive simulations while optimally scheduling the AGV to achieve production throughput cost-effectively. This research is strongly promised to help SMMs fully utilize big data and DT technology for gaining competitive advantages in the global marketplace. 
    more » « less